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Mathematical Programming 
 

The Mathematical Programming Add-in constructs models that can be solved using the 
Solver Add-in or one of the solution add-ins provided in the collection. 

 

When the Math Programming add-in is installed, several new command 
lines are added to the OR_MM menu. The menu items under the title Math 
Programming create models of the different types. 

Selecting an item from this list causes a dialog box to be presented 
which constructs a mathematical programming model. The models created 
by the add-in are solved with the Excel Solver, the Jensen Network Solver or 
the Jensen LP/IP Solver. All are Excel add-ins. Documentation for these 
programs can be reached by clicking the links on the lower left. 

The Solver add-in comes with Excel, and it can solve linear programming, integer 
programming and nonlinear programming models. The Math Programming add-in automatically 
builds Solver models and calls the computational procedures that solve the problems. All four 
model types can be can be solved in this way. 

The Jensen LP/IP Solver solves linear or integer programming problems. It is available for 
the Linear/Integer Programming and Network Flow Programming model types. 

The Jensen Network Solver can solve pure or generalized network flow models. Both linear 
and integer problems can be solved. It is available for the Network Flow Programming or 
Transportation model types. 

Parametric analysis can be applied to any of the math programming models. Here one 
parameter is allowed to vary within a specified range and the model is solved for each value. The 
results are provided by a table and a chart. 

Side Models provide an additional form on which math programming models may be 
constructed. They are much more compact representation than the forms provided earlier. 

A model worksheet includes buttons that change the model or call the solution algorithms. 
When opening a workbook on a different computer than the computer that created the model 
Excel will present a dialog indicating missing links. It is best to cancel this dialog. Then choose the 
Add Buttons command to replace all the buttons on math programming models in the workbook. 
Before saving a workbook that will be transferred to another computer, choose the Remove Buttons 
command. This removes all the buttons in the workbook so the link message does not appear. 
The buttons can subsequently be added with the Add Buttons command. The demonstration 
workbook for this add-in has its buttons removed, so the first thing to do is add the buttons. 

To build and solve models, the Math Programming add-in and one of the solver add-ins must 
be installed. The Math Programming add-in can build models, but not solve them. The solver add-
ins can solve models, but not build them. 
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Linear/Integer Programming 
 

 

 
This option is used for constructing a model whose objective function and 
constraints have the linear form. The model may have real, integer or mixed 
variables. 

Example Problem: Finding the Optimum Product Mix 
A type of problem most often identified with the linear program is the problem of distributing 

scarce resources among alternative activities. In this example the scarce resources are times 
available on four machines and the alternative activities are the production volumes of five 
products. The machine requirements in hours per unit are shown for each product in the table 
below. With the exception of product 4, that does not require machine 1, each unit of product 
must pass through all four machines. The unit profits for each product are also shown in the table. 
There are four machines of type 1, five of type 2, three of type 3 and seven of type 4. Each 
machine operates 40 hours per week. The linear programming model is to determine the 
optimum weekly production quantities for the products. The goal is to maximize total profit. 

 
To enter the model for this situation, select the Linear/Integer item from the OR_MM menu. 

The dialog defining the structure of the linear model is presented. Fields are available to define 
the Name, number of variables and number of constraints for the model. Buttons determine 
whether the problem is a maximization or a minimization, and the integer character of the 
variables of the problem. The variables may be specified as no integer, all integer, or mixed. In 
the latter case the field to the right of the buttons determines the number of leading integer 
variables. For a mixed problem, the leading integer variables have the smallest indices. Additional 
integer variables may be specified by placing the letter I before their indices on the model 
worksheet. 

One important point concerns the Problem Name. The entry here is used to provide Excel 
names to many ranges on the worksheet. The name must satisfy Excel's restrictions for naming 
ranges, that is: the names must not contain spaces, they must start with a letter and they may not 
include punctuation marks. If an error occurs when this dialog closes, try a different name for the 
problem. The program automatically suggests names like LP_1, LP_2 and so on. The user may 
prefer a more descriptive name. 
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The fields below the integer definitions determine 
some features of the model that will affect the data entry. 
When the Include Minimums box is checked, a row is 
provided to hold values for the minimums of the decision 
variables. If no row is provided, each variable is 
restricted from below by 00 restricts from below each 
variable. When the Include Maximums box is checked, a 
row is provided to hold values for the maximum values or 
upper bounds of the decision variables. If no row is 
provided, the upper bounds are assumed to be infinitely 
large. 

The Sensitivity Analysis checkbox determines whether 
the solution procedure will create a sensitivity analysis 
worksheet after performing the optimization. With the 
Random Problem option selected, the program generates 
data for the model using random numbers. Otherwise, all 
data items will be 0, except the constraint bounds, which 

will be given large values. The Show Comments checkbox will install Excel comments on important 
cells of the worksheet. This helps to understand the purpose of the various cells and ranges. 

The objective measure field specifies the measure to be maximized or minimized. Here we 
are maximizing the profit. 

The Solver option specifies the solution add-in to be used. Either choose the Excel Solver or 
the Jensen LP/IP Solver add-in. When using the Excel Solver it is important that the Solver dialog 
be opened before trying to construct a model. Then the model is automatically loaded into the 
Excel Solver when the model structure is placed on the worksheet. 

Most of the options on the original model dialog can be changed by using the Change button 
that is placed on the model worksheet. 

Constructing the Worksheet 
Pressing OK initiates the Macro that constructs the worksheet below. Generally the outlined 

cells may be changed on the worksheet to enter data describing the model. Cells colored yellow 
should not be changed. They hold formulae and data required by the program. Cells outside the 
region defining the model may be used for any purpose. The cells defining the variable values, 
H8:L8, may be set by the user to experiment with various solutions, however, the Solver Add-in 
replaces the contents of this range with the optimum solution. Generally, green cells hold 
numbers filled in by algorithms implemented with VBA subroutines. 

The range A2:A7 holds the Excel Solver model. That range is left blank when the Jensen 
Solver is used. When using the Excel Solver it is important that the user establish contact with 
that program before a model is created. To do this, select the Solver item from the Tools menu. 
After the Solver dialog opens, simply close the dialog. This establishes the link to the Excel 
Solver. The Math-Programming add-in automatically loads and calls the Solver as necessary. 
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The user adds data describing the coefficients for his or her problem. Variable names are 
placed in row 7, the objective coefficients are in row 12, and the lower and upper bounds for 
variables in rows 9 and 10. The upper bounds for the constraints are placed in column F starting 
at row 15. Constraint relations are in column E. Initially the relations are <=, however, they may 
changed to >= or = by placing the cursor on a cell and clicking on the Change Relation button. 
Several relations can be changed simultaneously by selecting a range of cells before clicking the 
button. The constraint coefficients start in cell H15 and continue downward and to the right. After 
entering the data for the example problem the worksheet appears as below. 

 
The worksheet shows only the coefficients that describe the objective and constraints of the 

model. The algebraic model is below. 

 
For the example only the relations on the right of the algebraic constraints are relevant, so we 

used single bound constraints. For some problems it might be more convenient to specify two 
bounds for each constraint. In that case the constraint lower bounds would have been 0. 

The large numbers used for the upper bounds on the variables indicate that there are no 
effective upper limits to the variables. Constraint and variable bounds may be either positive or 
negative. 

Solving the Problem 
The problem is Solved by clicking on the Solve buttonClicking on the Solve button solves the 

problem. When using the Excel Solver, the model is created, loaded into the Solver program and 
the algorithmic portion of Solver is called to obtain a solution. The solution for the example is 
shown below. The optimum decision variable values are in the range H8:L8. The objective 
function value is in F4. The constraint values give the evaluation of the constraint expressions for 
the optimum solution. 
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The change button is used to change the structure of the problem by changing the numbers 

of variables and/or constraints or by changing the integer nature of the variables. The solver 
option, the Goal (max or min) and the Sensitivity choice can also be changed. All changes are 
automatically incorporated into the Solver model. 

Jensen Solver 
The Jensen LP/IP Solver is called automatically when the Solve button is clicked. Jensen 

solvers are available for linear programming problems and network flow programming problems 
with or without integer variables. Generally, it takes much longer to solve problems when some or 
all the variables are required to be integer. The network solver can also solve some nonlinear 
problems. 

Excel Solver 
When using the Excel Solver, you must establish connection to the Solver by selecting the 

Solver option from the Tools menu. This opens a dialog. Just close the dialog. The add-in will 
control subsequent activities with regard to the Excel Solver. 

After the Math Programming add-in has created a model that uses the Excel Solver, the 
student can interact with the Solver via the Tools menu. The Solver dialog for the example 
problem is below. The fields refer to named ranges on the worksheet. Clicking the Solver button 
initiates the Solver algorithm. 

 
The Options button provides access to Solver options that control the solution procedure. The 

most important option for linear programming is the Assume Linear Model button. When checked, 
the solution algorithm is a simplex procedure, otherwise a nonlinear programming algorithm is 
used even when the model is linear. Generally, the simplex procedure is faster and more 
accurate than nonlinear programming for linear problems. 
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When Solver has found the optimum, the Results dialog appears. Several optional reports 

may be selected. The Sensitivity report provides reduced costs and sensitivity ranges for the 
variables and dual values and sensitivity ranges for the constraint bounds. If the add-in has called 
the Solver, this dialog is skipped. A sensitivity report is generated if that option had been selected 
during the problem definition. 

 
It is usually only necessary to load a particular model only once. If the characteristics of the 

model such as coefficients, bounds, number of variables and number of constraints are changed, 
the model is automatically adjusted and need not be reloaded. To solve a modified problem, 
simply click on the Solve button in the Solver dialog. On the other hand if the integrality 
restrictions for some variables or the direction of the objective function is changed (from max to 
min or from min to max) then the model must be reloaded into solver. The add-in does all this 
automatically, however, the changes can also be accomplished by interacting directly with the 
Excel Solver. 

Sensitivity Analysis 
The sensitivity analysis provided by the Excel Solver for the example is shown below. We 

assume that the student is familiar with the meaning of the various terms, so they will not be 
discussed here. Note however that the ranges associated with the objective coefficients are given 
by allowable increases and decreases. For example, the row for P1 indicates that the objective 
coefficient value (18 in the data) can range between 13.26 and 26.81 (to two decimal places) 
while the current solution remains optimal. The ranges for the R.H. Side values are similarly 
specified. 
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Jensen Solver 
Using the Change Button, we have changed the Solver to the Jensen LP/IP Solver. To use 

this solver the LP/IP Solver add-in (lpip_solver.xla) must be installed. When it is installed the 
LP/IP Solver item appears on the OR_MM menu. The worksheet for appears almost identical for 
this solver except the model has been deleted from the range starting in cell A2. The Jensen 
Solver reads the data directly from the ranges on the worksheet. Of course, one should expect 
the same solution from both solvers, but they may be different if alternative optimums are 
present. 

 
The sensitivity analysis given by the Jensen LP/IP Solver is shown below. Some columns 

have been widened from the original to show more decimal accuracy. In most cases Excel results 
have many decimals of accuracy that can be observed by widening the columns and choosing 
the General format to display numbers. The Jensen display differs from the Excel display in that 
lower and upper limits of ranges are shown rather than amounts of increase and decrease. 

  

The student can use either the Excel Solver or the Jensen LP/IP Solver to find solutions to 
linear models. Both can solve problems that include integer variables. The Excel Solver is faster 
for larger problems and can also solve nonlinear problems. More information about the Excel 
Solver can be found in the Excel documentation or from the Frontline Systems web site. The 
Jensen Solver can provide additional information about the algorithmic process used to find 
optimum solutions. For more information see the LP/IP Solver page. 

Integer Variables 
The change button is used to change the structure of the problem by changing the numbers 

of variables and/or constraints or by changing the integer nature of the variables. The solver 
option can also be changed. 

The following result is obtained when all the variables are required to be integer. Note that 
the letter I precedes the index of each integer variable. For this case they are all integer. 
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The LP/IP dialog has an entry that indicates the number of leading variables that are to be 
integer. The leading variables are those with the lowest indices. Variables other that the leading 
ones can be made integer by placing the letter I or any word beginning with I in the cells normally 
holding the variable indices. The image below shows the solution when the two leading variables 
are integer and P5 is made integer by placing the word "integer" in its index field. 
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Nonlinear Programming 
  

For nonlinear programming models some terms of the objective function 
or constraints involve nonlinear functions of the decision variables. Although 
the statement of the nonlinear model is similar to the linear programming 
model, the process of solving such problems is significantly more 
complicated. 

The figure shows a linearly constrained region and contours of a nonlinear 
objective function. 

The Excel Solver finds solutions for nonlinear programming models, but 
the nature of the solution obtained usually requires additional analysis. For 
some problems, the solution can be identified as the global optimum 

solution, that is, the solution that maximizes or minimizes the 
objective function over all feasible solutions. For other problems, the 
solution can only be identified as a local optimum, that is, a solution 
better than all feasible points in the close neighborhood of the 
solution. Because of numerical difficulties associated with the 
procedure, it is even possible that the Solver may fail to find a local 
optimum. We leave these questions to more advanced texts on 
nonlinear programming. Here we describe the operation of the add-in 
when the Nonlinear item on the OR_MM menu is selected. 

 

 

Example Problem - Product Mix with Decreasing Marginal Profit 
We modify the product mix example used to illustrate the linear programming add-in to 

incorporate nonlinear terms in the objective. Management has determined that the marginal profit 
for each product decreases as the number produced increases. A study determines that the profit 
for each product is approximated by the quadratic function given below. The table shows the 
coefficients for each product. With the same constraints on machine time, our goal is to find the 
product mix that maximizes profit. 

 
The graph below shows the profit for the first product as a function of production. The 

function starts at zero, rises to a maximum and then decreases. This is a concave function of 
production. The marginal profit, or the derivative of the profit function, is decreasing with 
production volume. 
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The mathematical programming model is the same as in the linear programming example 
except the objective function is now the sum of nonlinear terms. This is called a separable 
objective function because each term is a function of only one decision variable. 

 

  

Excel Model 
To model this problem with the Mathematical 

Programming Add-in, select Nonlinear from the OR_MM 
menu. The Nonlinear Model Dialog presents the same 
options as the Linear Model Dialog except that it also asks 
for the number of extra columns. Although not necessary 
for this problem, we enter 1 as the number of extra 
columns to illustrate the effect. The remainder of the 
options on this dialog should be clear from the discussion 
of the Linear Model Dialog. There are no solver options 
because only the Excel Solver can handle nonlinear 
models. Although the Excel Solver does solve problems 
with integer variables, great care must be exercised when 
interpreting these answers. Theoretically, all nonlinear 
solutions should be judged carefully with respect to 
optimality. Problems may have multiple local optimums, 
and simple algorithms may reach one of these rather than 

the global optimum. 

The worksheet obtained after data entry and solution is below. The solution was found using 
the Excel Solver program. 
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As for linear models, the linear objective coefficient row (row 12) models the linear terms of 
the objective. These coefficients are multiplied by the vector of variable values by the Excel 
formula in cell I2. The cell is labeled Linear to indicate that this value is the linear part of the 
objective function. 

The worksheet has two additional rows in the portion of the model describing the variables, 
one row for nonlinear objective coefficients and the other for nonlinear terms. The space for 
nonlinear objective coefficients in row 14 is useful for nonlinear terms that have only a single 
coefficient. In this case it holds the values of -d. The equations for the quadratic terms are entered 
into row 13. We color the cells in this row from column H through M magenta. This color indicates 
that the student is to enter Excel formulas in these cells. For example, the equation in I13 is to be 
the square of the value of P1. That value is in I8, so the formula in I13 is. 

=I8^2 

This describes the nonlinear effect of the variable in P1 on profit. The rest of the terms in row 
13 are similar, but each nonlinear term refers to the variable above it. For example J13 holds the 
formula (=J8^2). The terms from J13 through M13 are easily copied form I13 using the Excel Fill 
Right command. 

The nonlinear coefficients multiply the nonlinear terms and are summed to obtain the entry 
called the Nonlinear 1 component of the objective function. The formula for this contribution is in 
cell I3. In general, row 13 may hold any nonlinear, differentiable functions of the variable values. It 
is important that the functions be well defined for all values of the variables. For example the 
function (=1/I13) would fail if I13 were allowed to take on the value 0. 

Initially all nonlinear terms are set to zero. Both the nonlinear expressions in row 13 and the 
nonlinear coefficients in row 14 must be nonzero for the nonlinear terms to affect the objective 
function. 

A column (H) has been created to hold other nonlinear terms that may appear in the objective 
function and constraints. Although not used for this example, these cells can hold any continuous, 
differentiable functions of the decision variables. Where problems have several identifiable 
sources of nonlinear terms, it may be convenient to have more than one column to hold these 
terms. The nonlinear terms in the extra columns are summed and are shown as the Nonlinear 2 
component of the objective function in cell I4. The Linear, Nonlinear 1, and Nonlinear 2 values are 
summed in cell F4 to obtain the objective function. This quantity is optimized by the Solver. 

Nonlinear terms in the constraints can be entered as explicit functions of the decision variable 
in the range H17:H20. The nonlinear function values are accumulated with the linear constraint 
functions in the Value column of the constraints. 
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Solving the Problem 
Given a starting vector for the decision variables, the Excel Solver program uses a search 

procedure to move to a local optimum. That is, a point in the feasible region such that no 
improvement can be made by small perturbations from the point. It is a known result that when 
maximizing a concave objective function with linear constraints every local optimum is a global 
optimum, the solution that is the best of all feasible solutions. Since the objective function terms 
for this example are concave, when the Solver program terminates at a point with an indication of 
optimality, the point should be the global optimum. 

In general, we cannot be sure that the Excel Solver or any nonlinear programming algorithm 
will terminate at an optimal point unless some rather stringent conditions are satisfied. These 
conditions are the subject of nonlinear programming textbooks. For example if the objective 
function terms were convex, rather than concave, the algorithm will always terminate at an 
extreme point of the feasible region (when the region is defined by linear constraints). In many 
cases the extreme points will not be globally optimum solutions. The situation is even further 
complicated for integer-nonlinear models. An extensive coverage of these features would take 
many pages, but the user should beware of the problem of assuring optimality for nonlinear 
models. 

There are limitations on the functions that can appear in nonlinear terms. The functions 
should be defined, continuous and differentiable in and near the feasible region. This eliminates 
the use of IF, integer, and absolute value functions in the model. Ratios with denominators that 
might go to zero or square root terms that have negative arguments are similarly not allowed. 
These restrictions must be obeyed at every point that the Solver program might try to evaluate. 
Even if the initial solution is feasible, the Solver program might make small incursions outside the 
feasible region during the search process. If the program encounters a point for which a function 
cannot be evaluated it stops with an error message. 

The problem of finding the global optimum from perhaps a large set of local optima is been 
the subject of much theoretical as well as practical effort. This field of research and practice is 
called Global Optimization. Frontline Systems, the distributor of the Excel Solver has premium 
systems that implement highly advanced methods for finding global optimum solutions. 

The sensitivity analysis provided by the Excel Solver 
for nonlinear programming problems has a slightly 
different format than for linear programming problems as 
illustrated. The reduced gradient for a variable is the 
partial derivative of the objective function with respect to 
that variable, evaluated at the stopping point of the 
algorithm. The Lagrange multipliers are similar to the 
shadow prices associated with a linear problem. 
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Network Flow Programming 
This important class of linear programming models has the 

advantage that elements of a problem can be described by a picture 
rather than a series of algebraic expressions as for the general linear 
programming model. Even if a particular problem cannot entirely be 
expressed as a network flow problem, very often major components of 
the problem can be expressed as a network. For an "almost" network 
model, the problem can be described using this model construct, and 
the worksheet or the Solver model modified to incorporate nonstandard 
features. 

A network is a collection of nodes and arcs. Flow enters and leaves 
at the nodes and passes through the arcs. Generally there are lower 

and upper bounds on arc flows. Each arc has a unit cost and the arc cost is the flow multiplied by 
the unit cost. The goal is to find the flow that minimizes total cost. 

 
Each arc has a gain factor that multiplies the flow entering the arc to obtain the flow that 

leaves the arc. A network with all gains equal to 1 is called a pure network. If some gains are 
other than 1, the network is called a generalized network. 

Example Problem - Power Distribution 
Consider a regional power system with three generating stations: A, B, and C. Each station 

serves its own local area. Three outlying areas are also served by the system: X, Y, and Z. The 
power demanded at areas X, Y, and Z is 25 MW (megawatts), 50 MW, and 30 MW, respectively. 
The maximum generating capacity beyond local requirements and the cost of generation at the 
three stations is shown in the table. 

Power can be transmitted between any pair of generating stations, but 5% of the amount is 
lost. Power can be transmitted from some of the generating stations to the outlying areas, but 
10% of the amount is lost. Lines exist from stations A and C to X, from B and C to Y, and from A 
and B to Z. Our goal is find the minimum cost power distribution plan between generating stations 
and to outlying areas. 

 
 The network model for this problem consists of nodes and arcs as shown in the figure. The 

nodes are the circles and represent the generating stations and cities. The arcs are the directed 
line segments between nodes. They represent the transmission lines between generating stations 
and/or cities. 
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Network Flow Model of Power Distribution Problem 

  The numbers adjacent to the nodes in the square brackets represent flows entering the 
network or flows leaving the network, positive numbers for flows entering and negative numbers 
for flows leaving. Power enters at the generation stations, nodes A, B, and C through arcs that 
enter these nodes. Power leaves the network at nodes X, Y, and Z, where the negative numbers 
at the nodes indicates the amounts to be withdrawn at the nodes. The arcs for this case have 
three parameters, the upper bound, cost and gain. The upper bound for each transmission arc is 
M, indicating a large number. For an arc that passes from node i to node j, the gain multiplies the 
flow leaving node i to obtain the flow that enters node j. For this problem the gain factors 
represent the losses of power in the transmission lines. 

A solution to the network model is an assignment of flows to the arcs that satisfies the flow 
requirements at the nodes. Flow is conserved at each node in that the total flow entering must 
equal the total flow leaving. An arc that touches only one node, such as those entering A, B and 
C, contributes only to the conservation equation for that node. The optimum solution minimizes 
cost. 

Constructing the Network 
To enter the model in the form of a network, select 

Network from the OR_MM menu. The Network Model 
Dialog allows the specification of a name, indication of 
maximization or minimization for the optimization, 
indication of whether the problem is linear or nonlinear, 
specification of the numbers of arcs and nodes and 
identification of integer flows on the arcs. Data is entered 
for the example problem. 

The checkboxes near the middle of the dialog 
determine the set of parameters that will appear on the 
worksheet. We have unchecked the Include Minimum box 
because all the arcs have 0 arc lower bounds. When 
data for minimum flows are not shown, the 0 lower 
bounds are assumed. With the Include Maximums box 
checked, a column will be included for the maximum 
values of flows. If it were not checked, the default is that 
arc flows are unbounded from above. With the Include 
Gains box checked a column will be included for arc 

gains. The default assumption is that arc gains are all 1. The Sensitivity Analysis box tells the 
selected solver to perform a sensitivity analysis on the optimum solution. The Make Random 
Problem box generates a random network. This is convenient for demonstrating the network 
modeling and solving options. 
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We see three solver options at the bottom of the dialog: Excel Solver, Jensen Network Solver 
and the Jensen LP Solver. Any one of these can solve the linear network flow problem with or 
without integer requirements. The Excel Solver and the Jensen Network Solver can solve 
nonlinear problems. The Jensen Network Solver does not provide sensitivity analyses. 

The worksheet showing the model for the Power problem is shown below. The data has been 
entered for the arc and node parameters and after the problem has been solved. Column D holds 
arc names. In this case we have chosen to name each arc by the node names at its ends. 
Columns F through J hold the arc parameters. Columns F and G contain the indices of the nodes 
that originate and terminate the arcs. Columns H through J hold the remaining parameters of the 
arcs. Lower bounds on arc flows are assumed to be zero since that column was not included in 
the display. The Upper column specifies the upper bound. The transmission arcs for this case 
have bounds of 99999, the large upper bound not restricting the flow. The Cost column contains 
the unit cost of arc flow, and the Gain column holds the multipliers for arc flows. The variables for 
this problem are contained in the Flow column, column E. The flow in an arc is the flow leaving 
the origin node of the arc. The numbers shown in the illustration are the optimum values obtained 
by the Solver program. The column labeled Flow_O, column K, contains the flows entering the 
terminal nodes of the arcs. This is provided by an equation that multiplies the flow and the gain. 
The numbers in this column are used elsewhere on the worksheet and the formulas should not be 
changed. 

 
Notice that arcs 13, 14 and 15 do not have origin nodes in the figure defining the problem. 

Rather, these arcs bring flow into the network at the nodes representing the power plants. This is 
shown in column F by specifying 0 as the origin nodes of these arcs. Similarly, an arc that starts 
at some network node and leaves the network has 0 as its terminal node. 

Information associated with the nodes is shown in the portion of the worksheet starting in 
column M. Node indices appear in column M, and names are provided by the user in column N. 
Fixed flows entering or leaving the node are in Column O. A positive number in this column is a 
flow that enters at the node, while a negative number is a flow that leaves. In the example, the 
negative numbers for nodes X, Y and Z are the power demands at the cities. 

Column P of the node display, Balance, holds the equations that define conservation of flow 
for each node. Conservation of flow requires that total flow out of each node equal the total flow 
in. Formulas in these cells compute the net flow in or out of the cells. Feasible solutions require 
that the numbers in the Balance column all be zero. The solution shown here has very small 
values for the balance equations indicating that the solution is feasible within the numerical 
accuracy associated with the Solver program. 

Solving the Problem 
With the Excel Solver, clicking the Solve button on the worksheet loads the model into the 
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Solver and initiates the solution algorithm. The optimum solution is placed in column D of the arc 
display. 

With the Jensen Network Solver or the Jensen LP Solver option, clicking the Solve button 
causes the data to be read by the chosen program and the initiation of the solution algorithm. 
Again, the optimum values of the flow placed in column D. Both Jensen solvers can be used 
when all or some of the arcs are required to have integer flows. 

The optimum solution obtained by the Solver is shown graphically in the figure below. The 
optimum plan has generators B and C providing all the power with the plant C at its maximum 
capacity. Generator A provides no power the optimum solution. Flows on the transmission lines 
are indicated on the arcs. 

  

Optimum flows for power distribution problem, Z = 48,313. 
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Transportation Model 
The transportation model is a special case of the linear programming model. The 

Mathematical Programming Add-in allows the specification of models having 
this form with several variations. 

 

The figure shows a classic transportation model expressed in the matrix 
format. Three suppliers with 15 units each of some commodity must ship to 
three demanders with specified demand. The numbers in the table are the 
unit shipping cost. The goal is to find a distribution schedule that minimizes 
the total cost of shipments. 

 

 

Example - Product Distribution 
A manufacturer has three warehouses and five customers. Each warehouse has fifteen units 

of product available and each customer has a specified demand for the product. The cost of 
shipping from each warehouse to each customer is known and it is desired to find a shipping 
schedule that minimizes total shipping cost. Data concerning unit shipping cost and customer 
demand are given in the table. 

 

Constructing the Worksheet 
Selecting Transportation from the OR_MM menu 

presents the Transportation Model Dialog. 

 

With the data from the dialog, the add-in constructs a 
model with the number of suppliers and demanders 
specified by the example. The dialog provides an 
opportunity to select the worksheet name, numbers of 
suppliers and demanders and direction of optimization. The 
checkboxes allow several nonstandard features of the 
model that are illustrated later. The worksheet for the 
example problem after parameters have been entered and 
after solution by the Solver program is shown below. 
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The Add-in provides ranges for names of suppliers (C9:C11) and Demanders (D8:H8). The 

table contained in the range D9:H11 holds the transportation flows. These are variables of the 
problem and will be determined by the Solver. The row labeled Received (D15:H15) contains a 
sum formula that computes the total flows received by the demanders. These numbers are used 
in the constraints and the expressions should not be disturbed. Similarly the column labeled 
Shipped (L9:L12), contains the total flows shipped by the suppliers and the expressions should 
not be disturbed. 

The rows labeled Min Received, Max Received and Revenue hold parameters associated 
with the demanders. The first two rows place lower and upper bounds on the amounts received 
by each demander. Since in the present case these numbers are the same, the model is forcing 
all demands to be met. The row labeled Revenue specifies the unit revenue for each demander. 
This number is irrelevant for the example, and we have set the row to zero. The Columns labeled 
Min Ship, Max Ship and Unit Cost hold parameters for the suppliers. We have specified the 
maximum shipments as the amounts available at each supplier. We have not constrained the 
minimum shipments. The unit cost column is provided for cases in which different suppliers may 
have different costs for the products. 

The shipping costs are given in the second table of the model in the range D19:H21. The 
names heading this table are provided by formulae. Any names defined for the flow table will be 
automatically transferred to this and other tables. 

Problems may be solved with either the Jensen Network Solver or the Excel Solver. 
Sensitivity analysis is only provided by the Excel Solver. Clicking the Solve button initiates the 
solution algorithm. The optimum flows are placed in the flow array. 

Solving the Problem 
If the Jensen Network Solver is selected the problem is solved automatically when the Solve 

button is pressed. Similarly, the Excel Solver is automatically called if the Automatic option has 
been chosen. 

With the manual option, selecting the Solve button and following the instructions will load the 
linear programming model for the transportation problem for the Solver. The dialog below shows 
the model after it is loaded. Pressing the Solve button in the Solver dialog initiates the solution 
procedure. The optimum solution is shown in the Transportation Flow array. 
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Model Variations 
The Transportation Model Dialog allows several variations on the simple transportation 

model. The checkboxes Include Minimums, Include 
Maximums and Include Multipliers cause the Add-in to 
build tables that allow the entry of minimum 
transportation flows, maximum transportation flows, 
and arc gain factors respectively. The Integer Flows 
box, adds the requirement that the solution maintain 
integer flows. 

The matrices for the example with arbitrary values 
of lower bounds, upper bounds and gains are shown 
below. Lower bounds represent minimum shipments 
along certain routes, while upper bounds represent 
shipping capacities. When the gain factors are other 
than one, the amount shipped on a link is not the same 
as the amount received. The multipliers shown below 
represent a loss, perhaps due to spoilage. 
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When the shipping and receiving bounds are integer and the flow multipliers are all 1, we can 

be sure that the solution to the transportation problem will be integer. When this is not true, 
however, the flow solution may not be integer. The flow solution shown in the green area is 
certainly not integer. The Integer check box is provided to add the constraint that the flows be 
integer. The integer problem is much more challenging for the computer than when integrality is 
not required. The Excel Solver require several minutes to determine that this problem has no 
feasible integer solution, while the solution algorithm only requires a second or two when 
integrality is not required. 
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Parametric Analysis 
 This section describes a recent addition to the Math Programming add-in. To obtain this 

feature, you must download a version of the add-in dated 6/14/04 or later. 

Parametric analysis may be applied to any of the models constructed by the math 
programming add-in. A linear programming model with six variables and ten constraints is shown 
below. The data is random. The parametric analysis is performed by clicking the Vary button on 
the worksheet. Note that cell F15 is colored blue. For this example we vary the contents of this 
cell. 

 
A dialog is presented for entering the data 

concerning the analysis. The Vary Cell is the address 
of a single cell on the worksheet. For the example we 
choose cell F15, however any cell whose value is 
relevant to the solution may be chosen. The example is 
the right-side value for the first constraint. The dollar 
signs in the cell reference are not necessary. 

The next two fields hold the Lower and Upper limits 
on the range over which the parameter will vary. The 
Steps entry indicates the number of intervals into which 
the range will be divided. The Results Range specifies a 
range on the worksheet that will change with the 
parameter. The default value is the solution range, 

however, the range may be changed to show other values of interest. The range must be a single 
row or column of cells. 

The check boxes at the right indicate respectively whether the parameter is to be restricted to 
integer values, whether the values will increase or decrease as the parameter is varied, and 
whether the add-in is to construct a chart of the objective function value as a function of the 
parameter. 

The table below shows the results obtained when the right-side of the first constraint is 
varied. The first column (E) holds the parameter values. Note that the differences between 
adjacent values are not equal. This is due to the rounding necessary to obtain integer values. The 
second column (F) gives the objective function values for each parameter setting. The remaining 
columns (H through M) give the solution values. Nonzero values are highlighted in blue. For the 
example, we can clearly see that the linear programming basis changes as the parameter 
increases. 
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In the example we find a feasible solution for all parameter values within the range, but for 

nonlinear cases it is possible that there may be no feasible solution for some values of the 
parameter. Starting from the initial value (0 in this case), the program will solve the model. If no 
feasible solution is found, but the parameter increases until a feasible solution is found. Once a 
feasible solution is found, the parameter continues to change until an infeasible solution is again 
found. Then the process stops. Feasible solutions are shown, but values of the parameter that 
find no feasible solution are skipped. 

A chart showing the objective value as a function of the parameter value is constructed below 
the table. It should not be surprising that the curve is convex with respect to the parameter value. 

  

Integer Programming 
 We solved the same model after requiring that all variables have integer values. Now a 

branch and bound procedure must be used to find the solution for each parameter value. Of 
course the process takes quite a bit longer. The tabular results are below. 
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The objective function chart shows the steps in the objective value caused by the discrete 

nature of the solutions. 

 

Other Models 
Parametric analysis is available for the other math programming models. For nonlinear 

models the Excel Solver must be used. For network and transportation models the Jensen 
Network Solver may be used. For network and transportation models the table of results and the 
corresponding chart are to the right of the data. 

Nonlinear models may have trouble converging to a solution at every parameter value. When 
the first try at finding a feasible solution fails the program randomly generates a second initial 
solution. Hopefully the second try will find a feasible solution if one exists. 

The parametric feature of the add-in is very general and can be used for a number of 
interesting problems. One possibility is to place the varying cell outside the model. Then several 
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model features may be linked by Excel formula to the varying cell. The parametric analysis will 
affect many features of the model simultaneously. 

The results range may too lay outside the model. For example perhaps only a few of the 
variables are of interest in a very large model. A row or column region of the worksheet can hold 
equations that link to the cells holding the important variables. Then, only these are shown in the 
results table. An example would be the integer variables in a large and complex mixed integer 
programming model. 

If the Results Range box of the dialog is left empty, only the parameter and objective values are 
shown in the table. 
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Side Model 
The form of the math programming model provided by the Math Programming add-in is not 

very efficient for a problem with a large set of variables where each variable in the set appears in 
one or a very few constraints. For this kind of problem, we provide a second model structure that 
is placed on the same worksheet as the original model structure. Traditional math programming 
gives the name side constraints to constraints that are in addition to those of a master model 
structure. In this spirit we call the model described on this page the side model. The side model 
can identify new variables and new constraints. 

The side model can only be used if one of the other model forms, linear, nonlinear, network 
flow or transportation, has already been constructed on a worksheet using the procedures 
described earlier in the Math Programming section. We call the problem described by the original 
model the master problem. 

The side model is a series of one-line models. The one-line models are called subproblems. 
Each subproblem occupies cells on a single row of the Excel worksheet. Cells on the row contain 
all the variables and constraints for the subproblem as well as parameters and coefficients 
sufficient to define the model. The side model can have a large number of rows to represent a 
whole series of similar subproblems. The subproblems are linked to the original model by variable 
values transferred by equation from the master problem. We will see that a very large model can 
be constructed with a relatively small number of cells on the worksheet. We can use the Excel 
Solver to solve these problems, but only models of very limited size can be solved with the free 
Solver available with Excel. The Jensen LP/IP Solver has recently been modified to implement the 
L-Shaped method so that quite large models may be addressed. The L-shaped method is a 
decomposition method for solving problems with side constraints. 

The side models are very useful for stochastic programming models, models that involve 
piece-wise linear approximations and models that include fixed charge variables. Several 
examples are presented in the first three pages. The L-shaped method is on the two remaining 
pages. 

• Multiperiod Model 

• Stochastic Programming 

• Regression 

• L-Shaped Method 

• L-Shaped Theory 

The Block Diagonal Form 
An LP is presented below with the form that suggests that a side model might be useful. In 

the figure below, the colored regions in the constraint coefficients may contain nonzero numbers, 
while the cells outside these regions contain all zeros. The constraints of this model have the 
block diagonal form. There is a set of variables x that are related by the first two constraints 
through the matrix A. The variables in z are also included in this set of constraints via the matrix 
A'. The following six constraints contain z and the variables labeled y11, y12, etc. In the following 
we call these variables yk where k=1, 2 or 3. These constraints contain nonzero coefficients in the 
matrices T and W. The constraints can be divided into sets so that y1 appears in the first, y2 
appears in the second, and so on. The matrix T multiplies z in each set, and the matrix W 
multiplies yk. The lower bounds, upper bounds and objective coefficients are similarly partitioned. 
The RHS values of the constraints are also partitioned in this fashion into b, d1, d2 and d3. 

The full matrix representation of a problem with the block diagonal form is not efficient 
because of the large number of zero's in the matrix. Although 0's do not affect the efficiency of the 
Solvers significantly, the large matrix consumes many cells of the Excel worksheet. The number 
of cells grows as the product of the number of variables and the number of constraints. Entering 



 Mathematical Programming 

 

26 

the nonzero data is difficult because it is hard to keep track of rows and columns. In the form 
presented, the number of variables is limited to the number of columns of the worksheet (the 
maximum is about 250). Numbers associated with data lists outside the form are not identified 
with regard to source thus making the model difficult to check and maintain. These difficulties 
magnify as the number of blocks in the diagonal form increases. 

The form is also called the L-Shaped form because the nonzero entries roughly resemble an 
inverted L. The matrix A comprises one bar or the L, while the matrix to the right of A comprises 
the other bar. 

 

Side Model 
 The side model shown below provides a more efficient representation that does not 

include all the 0's. The model at the top of the page (through row 16) is master problem. It 
describes the first two constraints with the variables x and z. 

The side model starts in row 22 and contains the information describing the subproblems. The 
linking variables, z, and the associated matrix T is in columns J through L. The linking variables 
are identified by the indices in cell K27 and L27. The names and values of z1 and z2 are 
transferred through equations in the range K28:L29. The subproblem variables, bounds and 
objective coefficients and the matrix W appear in columns N and O. The variable values are in 
the green range N31:N33. These are determined by the Solver. The objective function for the 
side model is computed in column P. The objective terms are weighted by the numbers in column 
I. The constraint values, names and relations are in columns R and S. The RHS values are in 
columns T and U. 
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 At the top of the page we see the objective function contributions of the master and 

subproblems in cells I2 and I3 respectively. These are totaled in cell F4. The value of cell F4 is 
maximized by the Solver. 

Notation 
  The options are more easily discussed when we define notation for problems with the 

block diagonal form. The general problem is at the left. The model expressed with subproblems is 
at the right. For simplicity, the forms are shown with equality constraints, however, they can be 
expressed as inequalities as well. We show all lower bounds to be zero, but the forms allow 
nonzero or negative lower bounds. We show a linear programming model, but the side model can 
also be attached to nonlinear master problems, network flow models or transportation models. 
The side models may include nonlinear terms in the objective function. 

 

 
 

After a master problem has been placed on a worksheet, a side model is constructed by 
selecting the Side Model item from the Math Programming menu. The dialog below is presented. 
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The dialog presents options that determine where the side model is placed on the worksheet 

and the features that are to be included as specific data columns. The cell at the upper left corner 
of the side model display is indicated in the Cell field. The Subproblems field holds the number of 
subproblem rows to be included in the side model. Parameters indicate how many columns are to 
be included to hold parameters of the subproblems. It is often useful to have all relevant 
parameters entered in these columns, but the parameters can be entered directly in the data 
columns describing the subproblems. Transfer is the dimension of the linking variables z. 
Variables is the dimension of the subproblem variables yk. The Constraints field holds the number 
of constraints in each side problem. The buttons Lower, Upper, and Obj indicate whether specific 
columns are to be dedicated to these values. If not checked the values are provided by single 
cells that pertain to all the subproblems. Separable Nonlinear includes columns for separable 
objective function terms and their coefficients. Nonseparable Col. includes a column for 
nonseparable nonlinear terms. RHS button includes a columns to hold a different RHS value for 
each subproblem. Otherwise a single value is provided to pertain to all subproblems. The Show 
Parts button provides a column for the value of TDkz another for Wyk. We illustrate a variety of 
options in the example problems that follow. 

Although the example shows a common matrix T for all subproblems, it is often useful to have 
different matrices for the different subproblems. This is provided by the matrix Dk that varies by 
subproblem. In matrix notation, Dk is a diagonal matrix that multiplies T. The effect is that the 
transfer matrix can then be varied by subproblem. Since only the diagonal elements are relevant 
they are stored on our form in each subproblem row. Although not every situation can be handled 
using these matrices, we will find that they are very useful for some applications. For applications 
that have a constant transfer matrix T, the values in the cells are all set to 1. Then D is an identity 
matrix. 

 

See the ORMM Web Site for the Examples of the Side Model 
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Stochastic Programming 
When we recognize the possibility of uncertainty or risk within the 

context of mathematical programming, the decision problem might be 
written as below. The model is shown in the typical matrix format for 
an LP except tildes appear over all the parameter matrices. This 
implies that all may be affected by  a vector of random variables. In 
practical instances the model could be complicated by nonlinear terms 
and integrality restrictions. In any event, the model as stated, is not 
well defined because: (1) the timing of the decisions and observations 
of the randomness is ambiguous and (2) what is meant by an optimal 
solution and a feasible solution is unclear. 

 

Stochastic programming addresses the first issue by explicitly defining the sequence of 
decisions in relation to the realization of the random variables. Given the sequence, an objective 
function is defined that reflects a rational criterion for evaluating the decisions at the time they 
must be made. Feasibility conditions must be adapted to the fact that decisions made before the 
realization of randomness may have feasibility consequences after the realization. How the 
issues are resolved leads to the several different problems considered in this section. No single 
problem formulation is sufficient. 

For this section we assume that the probability distribution of  is known. More properly we 
should say that stochastic programming is decision making under risk, reserving the phrase decision 
making under uncertainty for those situations for which probability distributions are unavailable. We 
will, however, use the more popular term, uncertainty, to refer to situations in which distributions 
are known. 

For stochastic programming, some variables are to be set by a decision maker, these are the 
decision variables, while some model parameters are determined by chance, and these are the 
random variables. There are a variety of situations one might consider in this context. One 
differentiation is based on when the decision maker must make decisions relative to the time 
when the random variables are realized. There are several possibilities. Links on the titles go to 
pages in this section. Some of these descriptions are simplified from more general situations 
described in more advanced sources. 

• Wait and See: The decision maker makes no decisions until all random variables are 
realized. 

• No Recourse: The decision maker must choose values for the decision variables before 
any of the random variables are realized. There is a risk of violating the constraints. 

• Chance Constraints: This is the no-recourse situation when only the RHS vector is 
random. Solutions are found with specified risks of constraint infeasibility. 

• Simple Recourse: This topic considers the problem with a random RHS vector. The 
decision maker must choose values for the decision variables before the RHS values are 
known, but variables adjusting to the RHS variation are set after the realization. Penalties 
for constraint violation are specified. A section on Approximations indicates how 
continuous probability distributions can be approximated for this analysis. An Aircraft 
Allocation example describes one of the first problems addressed by stochastic 
programming. 

• Recourse: Some of the decision variables must be set before the random variables are 
realized, while others may wait until after they are realized. Models explicitly represent 
the initial decisions and all recourse decisions. Although the models can be very large, 
optimum solutions solve for all possible circumstances. A Capacity Expansion example 
shows that small problems sometimes result in very large models. 

• Multistage Recourse: Decisions and random variables are determined in stages. The first 
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set of decision variables must be fixed before all realizations. Then the first set of random 
variables are realized and the second set of decision variables are fixed. The process 
continues through a series of decisions and realizations. Typically the stages represent 
intervals of time. We do not consider this situation. 

This section addresses some of the relatively simple problems of stochastic programming, 
those that we might be able to approach with our Excel add-ins. Along the way we provide 
examples of situations involving uncertainty. There is a great deal of high-level research in this 
field attempting to extend the bounds on the variety of problems that can be practically solved. 
Most solutions require high-power computation. The research and the computation are beyond 
the capabilities of this author and also of Excel. The reader interested in pursuing this subject 
further should visit the Stochastic Programming Community Home Page. 

Uncertainty, or risk, is modeled using random variables and probability distributions. In this 
section, we often use the features of the Random Variables add-in, particularly the Functions 
feature. A page is provided in the random variables section summarizing some of the results of 
this section. We assume in the following some familiarity with probability theory and the Random 
Variables add-in. Many of the models constructed in this section use the Side Model feature of the 
Math Programming add-in. 

The materials here are partially based on the unpublished manuscript An Optimization Primer, 
An Introduction to Linear, Nonlinear, Large-Scale, Stochastic Programming and Variational Analysis, 
by Roger J-B Wets, January 11, 2005. Suggestions and notes from University of Texas 
colleagues David Morton and Lisa Korf were very helpful. 

See the ORMM Web Site for types of Stochastic Programming 
 

 



 Excel Solver 

 

31 

Excel Solver 
All models formed through the Math Programming add-in can be solved with the Solver add-

in that comes with Excel. The add-in comes free with Excel. More capable versions can be 
purchased from Frontline Systems. 

To use this add-in it must be installed on your computer. If it is installed the item "Solver" 
appears on the Tools menu of Excel. If the item does not appear on the Tools menu, use the 
custom installation procedure on the Microsoft Office CD to install it. 

The Math Programming add-in automatically creates and loads the Solver model every time a 
model is created and every time the Solve button is clicked. Before this automatic operation is 
possible, the student must establish contact with the Solver. This is accomplished by simply 
selecting the Solver item from the Tools menu. The empty Solver dialog box will appear. Simply 
close the dialog. This action creates the desired link. 

If the link is not established before the add-in tries to use Solver, the 
message from Excel below appears. This indicates that the attempt to use 
Solver was unsuccessful. 

After the OK button is pressed the dialog box from the add-in provides 
instructions for linking to Solver. Once the connection is made, all 

interactions with the Solver are automatic. 

 
We should note, that the Solver add-in is very useful even without the Jensen add-ins. It can 

used in many contexts and every student of Excel should learn to use its features. 
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Linear/Integer Programming Solver 
The LP/IP Solver add-in provides an algorithm that solves Linear and Integer Programming 

problems. It can be used instead of the Excel solver for the linear models created by the 
Mathematical Programming add-in. There are no built-in limits for model size. Arrays are 
dimensioned automatically. For large problems, excessive memory requirements may cause the 
program to crash or computation time may be large. 

When this add-in is installed, a new item appears on the OR_MM menu, LP/IP Solver. This 
item does not solve models. Rather, models are solved when the user 
clicks on the Solve button on the linear, integer, or mixed integer model 
sheets. The LP/IP Solver menu item presents a dialog that sets several 
parameters related to the solution process and displays. The dialog will 
appear only when a mathematical programming model constructed with 
the Math Programming add-in is present on the active worksheet. 
Otherwise the message below indicates that it is not available. 

"This is not a valid worksheet for the LP/IP Solver" 

When a valid worksheet is active, choosing the LP/IP Solver menu 
item presents the dialog below. These options only affect the Jensen 
LP/IP Solver, and do not affect the Excel Solver. 

 

 

Solution Display Options 
 These options create a separate worksheet for algorithm details that shows iteration 

information from the solution algorithms. The reports are useful for the student who is learning 
about the solution methods used. They may also be useful for practitioners trying to discover why 
certain IP models are so hard to solve. 

 Simplex Iterations 
This option creates a new worksheet with the suffix Details. Information about the iterations of 

the primal simplex is printed on this worksheet. The number field to the left on the dialog holds 
the number of iterations to be displayed. Since some problems may require thousands of 
iterations, this number should be set to a reasonable value or the memory requirement for Excel 
will be excessive. 

The figure below shows the detail worksheet for the Production problem described earlier. 
The display shows the slack variables added for the four constraints. No artificial variables are 
required. Five simplex iterations are necessary to find the optimum solution. The display shows 
details about the iterations. 
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 Enumeration Tree 
When the production variables are required to be integer, the LP/IP add-in can be used to 

show the details of the enumeration process. Using the LP/IP Solver dialog we click the Show 
Enumeration Tree checkbox. The number field to the left on the dialog is the number of 
enumeration tree vertices to be displayed. We have also checked the Show Incumbents checkbox. 

While the problem is solved a record is kept of 
the enumeration process and displayed on the 
Details worksheet. The production problem with 
integer variables requires an enumeration tree 
with 42 nodes. 

Clicking both display checkboxes will show 
both the enumeration tree and the corresponding 
steps of the simplex method used by the bounding 
procedure. 

 

 



 Mathematical Programming 

 

34 

 

 
 The solution of the problem is below. Cell F4 shows the profit associated with the best 

solution found (the final Incumbent). Cell F5 shows the upper bound on the profit. In this case, the 
solution is optimum and the upper bound has the same value as the incumbent. 

Below the model we show the incumbents discovered during the procedure. The first feasible 
solution was found at node 7 of the enumeration tree. The second, and final, feasible solution 
was found at node 35. It is often useful to view the incumbents in this manner. Integer and mixed-
integer problems sometimes have many similar solutions and viewing the incumbents may show 
this. 

Algorithm Control Options 

Initial Variable Values 
Two different starting strategies are available. The first option starts with all variable values 

equal to 0. The second strategy gathers the initial variable values from the values shown on the 
worksheet. The algorithm starts with these values. This advanced start option reduces the 
number of iterations required when only slight modifications are made to the model. When the 
model is an IP or MIP and the initial solution is feasible, the solution add-in uses this solution as 
the initial incumbent. A good initial solution often reduces the size of the enumeration tree and the 
time required to solve the problem. When the example uses the optimal solution for the initial 
solution, the enumeration tree has only 16 nodes. The tree is shown below. 
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 MIP Tolerance 
When solving integer or mixed integer programming problems, vertices of the enumeration 

tree are fathomed when the relaxed solution objective is less than (for a maximization problem) 
than the incumbent solution. A nonzero tolerance makes the fathoming test a little easier by 
fathoming the vertex if its relaxed objective is within x% of the incumbent solution, where x is the 
number entered in this field. The solution may be found with fewer iterations and less time when 
this value is greater than 0. When the tolerance is other than 0, however, there is no guarantee 
that the optimum solution is obtained. It is guaranteed that the solution is with x% of the optimum. 
The Excel Solver has a similar tolerance specified in the Options dialog of the Solver. 

In the dialog below we specify a 1% tolerance level. Clicking the Solve button provides the 
following solution. The solution returned is not 
optimum. Rather the solution has the profit of 2976. 
The optimum has the profit of 2984. The upper 
bound returned in cell F5 is 2988. One of the 
primary features of the solution procedure is that it 
returns both lower and upper bounds on the solution 
value. Although the selection of 1% in for the 
example does not result in a guaranteed optimum, 
we are guaranteed that the solution is 1% of the 
optimum. The objective for the incumbent and the 
Upper Bound value provides a range in which the 
optimum value must reside. 

 

 
 The advantage of choosing a nonzero tolerance is that the size of the tree is significantly 

reduced. For the example the tree is reduced from 42 to 14 nodes. For larger problems, the 
reduction will often be a much greater proportion. 
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 Time Limit 
When solving all integer or mixed integer programming problems, the process may take a 

long time. The program will stop when this time limit is reached. The user may give up at this 
point or continue the optimization. The Excel Solver has a similar time limit specified in the 
Options dialog of the Solver. 

 Show Incumbents 
When solving all integer or mixed integer programming problems, the algorithm may find 

feasible solutions during the enumeration process. During the process, the feasible solution with 
the best value is called the incumbent solution. When the process is complete, the final incumbent 
is placed on the worksheet as the solution. When this checkbox is selected, all incumbents 
discovered are shown below the model. This is illustrated in a figure above. 
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Enumeration Tree 
The LP/IP add-in uses a branch-and-bound procedure for finding solutions. The procedure 

uses an implicit enumeration tree to search for the optimum or for a solution within a specified 
percentage of the optimum. This page illustrates the tree for an example from Chapter 8 of the 
book Operations Research Models and Methods. A complete discussion of the tree structure is in that 
text and other texts describing the method. 

The example problem is shown below with the problem solved as an LP. For the remainder of 
this page we enforce integrality on all the variables. 

 
When we use the Change button to express all variables as integer, we see the model below. 

All the variable indices in row 6 have a predecessor of "I-". This identifies the integer variables. 
The figure shows the solution to the integer problem. Note that it is much different than the LP 
solution. In fact the LP and IP solutions are entirely reversed with respect to nonzero values. Both 
X2 and X6 are 0 for the LP and nonzero for the IP. 

 
The enumeration tree created by the add-in is shown below. Each line of the display shows 

one node of the tree. 
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The list is a description of the more commonly represented tree structure below. Although this 

figure more clearly represents the process, it is difficult to draw for anything but the smallest of 
problems. Nodes in the figure have one underline if they are fathomed because of bounds and 
two underlines if they are fathomed because of infeasibility. 
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Network Flow Programming Solver 
A network flow solution algorithm is provided by the Network Solver add-in (net_solver.xla). 

The Excel Solver actually solves network problems by solving the underlying linear programming 
problem. Network algorithms are generally faster than linear programming algorithms for solving 
problems that can be modeled entirely as networks. This algorithm is used when the user 
chooses the Jensen Network Solver for either the Network or Transportation models of the 
Mathematical Programming add-in. The add-in must be installed prior to clicking on the Solve 
button for either case. The add-in works for linear problems that may or may not have integer 
variables. 

There are no built-in limits for model size. Arrays are dimensioned automatically. For large 
problems, excessive memory requirements may cause the program to crash or computation time 
may be large. 

The Jensen Network Solver add-in puts an item on the OR_MM menu: Network Solver. 
Choosing this item presents the dialog form shown below. The options on 
this dialog control the Jensen Network Solver. These options are 
particularly useful for the student interested in the procedures used in 
network optimization algorithms. The following describes the several 
categories of options appearing on this dialog. 

Note that the Network Solver add-in only works for models 
constructed with the Math Programming add-in. A valid network model 
must be on the active worksheet when the Network Solver menu command 
is selected. 

The solution parameters specified on this dialog are stored on the 
worksheet in column A starting at row 2. 

 

 

Solution Display Options 
These options print information on the problem worksheet or on a separate worksheet. The 

displays are useful for debugging algorithms, learning the principles of the algorithms and 
sensitivity analysis. 

Show Dual Variables: Prints on the worksheet the node dual variables at optimality. Each node 
has a dual variable determined by the basis tree. The dual variables are shown to the right of the 
node external flow data. 

Show Reduced Cost: Prints on the worksheet the arc reduced costs at optimality. Arcs are in 
three categories: basic arcs have a blue background color, nonbasic arcs with flow at the lower 
bound on a white background and arcs with upper bound flow with gray background. The reduced 
cost information is shown to the right of the arc data. 
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Show Basis: For a network flow problem, a basis is defined by a collection of arcs with one arc 
entering each node of the network. For a pure network problem the collection defines a tree. For 
the generalized problem it is a tree with one additional arc. When checked, the program displays 
the tree information to the right of the dual variables. 

Simplex Iterations: This option creates a new worksheet with the suffix Details. Detailed 
information showing the iterations of the primal simplex are printed on this worksheet. The 
number field to the left on the dialog is the number of iterations to be displayed. Since some 
problems may require thousands of iterations, this number should be set to a reasonable value or 
the memory requirement for Excel will be excessive. 

Enumeration Tree: This option displays on the Details worksheet information about the 
enumeration tree for integer problems. The number field to the left on the dialog is the number of 
branch and bound vertices to be displayed. 

The figure below shows the worksheet for the Power example. The reduced costs are shown 
on the arc display in column M. 

 
The dual variables basis tree information is shown on the node display. 

 
The figure below shows the artificial arcs added prior to the beginning of the network simplex 

iterations. There is one artificial arc for each node. The computer adds three nodes to the original 
6 nodes specified in the model. Node 7 is a super source node, node 8 is a super sink node, and 
node 9 is called the slack node. Four new arcs, 16-19, are added to connect the slack node to the 
super source and supper sink. The artificial arcs begin at arc 20. 
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The simplex iterations first drive out the artificial arcs from the basis during phase 1. The 
phase 2 iterations move toward the optimum basis obtained at iteration 14. 

The enumeration tree is obtained for generalized problems (all gains not 1) when some arcs 
are required to have integer flows. The output is similar to that obtained with the Jensen LP/IP 
solver. 

Algorithm Control Options 

Initial Solution 
Two different starting strategies are available. The first option starts with all arc flows equal to 

zero and an all artificial initial basis. The second strategy gathers the initial flows from the values 
shown on the worksheet. If a basis is displayed, the arcs listed are used as the initial basis. The 
algorithm starts with these values for the flows and the basis. The advanced start option will result 
in fewer iterations when only slight modifications are made to the network model. 

MIP Tolerance 
When solving all integer or mixed integer programming problems, vertices of the enumeration 

tree are fathomed when the relaxed solution objective is less than (for a maximization problem) 
than the incumbent solution. This tolerance makes the fathoming test a little easier by fathoming 
the vertex if its relaxed objective is within x% of the incumbent solution, where x is the number 
entered in this field. The solution may be found with fewer iterations and less time when this value 
is greater than 0. When the tolerance is other than 0, however, there is no guarantee that the 
optimum solution is obtained. It is a guaranteed that the solution is with x% of the optimum. The 
Excel Solver has a similar tolerance specified in the Options dialog of the Solver. 

Time Limit 
When solving all integer or mixed integer programming problems the process may take a 

long time. The program will stop when this time limit is reached. The user may give up at this 
point or continue the optimization. The Excel Solver has a similar time limit specified in the 
Options dialog of the Solver. 
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Update Incumbent on the Screen 
When solving all integer or mixed integer programming problems, the algorithm may find 

feasible solutions during the enumeration process. The feasible solution with the best value is 
called the incumbent solution. Although intermediate steps are not displayed on the model 
worksheet while the process continues, when this checkbox is selected, the display will be 
changed whenever a new incumbent is discovered. For later versions of this add-in the 
incumbents are displayed automatically. 

 

 


