Chapter 20 Page 1

Dynamic Programming M ethods

Although all dynamic programming (DP) problems have asimilar structure, the
computational procedures used to find solutions are often quite different. Unlike linear and
integer programming where standard conventions are used to describe parameters and
coefficients, there is no common data structure that unifies all DPs. Models are problem
specific, and for the most part, are represented by recursive formulas rather than algebraic
expressions. For thisreason it is difficult to create a general computer code that will solve
all problems. Itisusually necessary to write one's own code to solve a specific
application. Thisisone of the reasons why dynamic programming is much less popular
than, say linear programming, where models can be created independently of the software
leaving the coding of algorithms to the professionalst.

Dynamic programming is, however, much more general than linear programming
with respect to the class of problemsit can handle. Asthe examplesin the previous chapter
suggest, thereis no difficulty with the integer restrictions on the decision variables, and
there is no requirement that any of the functions be linear or even continuous. Thereisaso
never any question of local optima; for a correctly formulated problem, adynamic
programming agorithm will always report agloba optimum when it terminates.

There is some ambiguity asto the origins of DP but the ideas date back at |east to
the work of Massé in the mid-1940s. Massé was a French engineer who developed and
applied afairly analytical version of DP to hydropower generation. The standard literature,
though, credits Richard Bellman with developing the theoretical foundations of the field
and proposing the first algorithms. His early research, published in the 1950s, was aimed
at solving problems that arisein the control of continuous systems such as aircraft in flight
and electronic circuits. Most traditional expositions follow Bellman's original ideas and
describe what is called backward recursion on the exhaustive state space. Thisis perhaps
the broadest of the solution methodol ogies but the least efficient in many instances. We
begin with afull description of backward recursion and then move on to forward recursion
and reaching. We close the chapter with alimited discussion of stochastic modelsin which
the decision outcomes are viewed as random events governed by known probability
distributions.

20.1 Components of Solution Algorithms

The central requirement of a dynamic programming model isthat the optimal sequence of
decisions from any given state be independent of the sequence that |eads up to that state.

All computational procedures are based on this requirement known as the principle of
optimality so the model must be formulated accordingly. If we consider the single machine
scheduling problem with due dates discussed in Section 19.6 of the DP Models chapter, we
see that the optimal decision at a particular state does not depend on the order of the

1 The methods of this chapter are implemented in the Teach DP Excel add-in which is quite general with
respect to the class of problemsit can solve.

6/3/02

2 Dynamic Programming Methods

scheduled jobs but only on their processing times. To calculate the objective function
component c(d, t) given in Table 22 of that chapter, we need to first calculate

t=PiL;5p()) + p(d)

for any decisond 1 D(s). Thiscalculation isnot sequence-dependent so the principle
applies.

Now consider an extension of this problem involving a changeover cost ofi, j) that
isincurred when the machine switchesfrom job i to jobj. The new objective function
component isc(d, t) + o(i, d), where i isthe last job in the optimal sequence associated with
the current state. This modification invalidates the DP formulation in Table 22 because the
current and future decisions depend on the sequence of past decisions. However, if we
alter the definition of a state to include an additional component corresponding to the last
job in the current sequence, we obtain avalid model similar to the one for the traveling
salesman problem in Table 23. The new state variable ranges from 1 to n so the price of the
modification isan order nincrease in the size of the state space.

The general model structure given in Table 4 in Section 19.2 implies that many
optimization problems can be formulated as dynamic programs. In this section, we
introduce the basic concepts associated with solution algorithms. Although the algorithms
are appropriate for most of the models in Chapter 19, their computational complexity may
vary from simple polynomial functions of the number of state variables n to impractically
large exponential functions of n.

The Principle of Optimality

For dynamic programming solution methods to work, it is necessary that
the states, decisions, and objective function be defined so that the principle
of optimality issatisfied. Very often aproblem modeled in these termsin an
apparently reasonable way will not satisfy this requirement. In such cases,
applying the computational procedureswill likely produce solutions that are
either suboptimal or infeasible. Fortunately, it is possible to model most
problems so that the principle holds. Asour discussion of the single
machine scheduling problem indicates, obtaining avalid model from an
invalid one very often involves defining a more complex state space.
Theoretically, thereis no difficulty in doing this but the analyst must keep in
mind that as the size of the state space grows, the computational burden can
become prohibitive.

The principle of optimality, first articulated by Bellman, may be
stated in anumber of ways. We provide several versionsin an attempt to
further clarify the concept.

1. Theoptimal path from any given state to afinal state depends only on
the identity of the given state and not on the path used to reach it.

2. Anoptimal policy hasthe property that whatever theinitial state and
decision are, the remaining decisions must constitute an optimal policy
with regard to the state resulting from the first decision.

3. Anoptimal policy must contain only optimal subpolicies (Kaufmann
1967).

Components of Solution Algorithms 3

The Acyclic

4. A policy isoptimal if at a stated period, whatever the preceding
decisions may have been, the decisions still to be taken congtitute an
optimal policy when the result of the previous decisionsis included.

The principle of optimality seems so obviousthat it requires no
proof. Indeed the proof is simply that if a solution contains a nonoptimal
sequence, it cannot be optimal sinceit could be improved by incorporating
the optimal partial sequence rather than the nonoptimal one. The danger is
that in formulating a dynamic programming model there is no clear way of
seeing or testing whether or not the principleis satisfied. Much depends on
the creativity and insights of the modeler. Alternatively, an extremely
complex model might be proposed that does satisfy the principle but is
much too elaborate to be of any practical vaue.

Decision Networ k

Dynamic programming models with discrete decision variables and a
discrete state space have the characteristics of adirected acyclic decision
network. This means that a sequence of decisions cannot encounter the
same state (node) twice. The network has no cycles and the states are said
to be partialy ordered. Thusif we consider two states, either thereisno
relation between them or one can be identified as preceding the other. We
write the relation between two states s; and s; ass; « s; if state s; comes

before ;- For an acyclic problem it isimpossible that both

S « sj and sj »S;

hold. Not al states need be related in the manner just described so we call
thisapartial order rather than a complete order.

To illustrate this concept consider the decision network shown in
Fig. 1 for apath problem. The numbers on the nodes are used to identify
the states.

4 Dynamic Programming Methods

Figure 1. Path problem used to illustrate partial order

The partial order defined by the figureis asfollows.

S14S) S1«S3 Sy «Sy Sp €35 S3 4S5
S3«Sg S4«S7 S5 «S7 S «Sg Sg «Sg
S7«Sg Sg «Sg

Therelationship istransitivein that if s; « ; and Sj « S thens; «s, isalso
true. Notethat severa pairs of statesin the figure are unrelated such as s,
and sg.

6

A partial order implies that some states must be final states denoted
by the set F. The corresponding nodes have no originating arcs. State s is

the only member of F in Fig. 1. Nodes with no terminating arcs
correspond to initial states and are denoted by theset |. State s, isthe sole

member of | in the example. The fact that the states have a partial order has
important computational implications.

A Requirement for the State Definition

Thedtates = (sy, Sy, ..., Sy, isuniquely defined by the values assigned to

the state variables. Computationa procedures require that the state values
perform an additional function -- that they define a complete ordering that
includes the partia ordering determined by the decision network. Thiswill
be accomplished by ordering the states lexicographically.

Definition 1. Leta=(a, &,...,d,) andb =(b;, b,,..., b)) betwo
vectors of equal size. Vector aissaid to belexicographically larger than b

Components of Solution Algorithms 5

if the first component in which the two vectors differ, cal iti, has g > by;.
Similarly, if § < b;, then ais said to belexicographically smaller thanb.

We use the symbols S and < to describe the relations of * lexicographically
larger than’ and ‘lexicographical smaller than,” respectively. Asusual, the
symbols > and < are used to indicate the relative magnitude of numbers.
Formally,

aébifq;bkfork: 1,...,i-1,and a > b, for somei £m.

Note that the relation between & and bk for k >iisnot materia to this
ordering.

For computational purposes, we add the additional restriction that
the states must be defined so that their lexicographic order includes the order
implied by the decision network of the problem. That is, if s; and s; are

two states with's; « Sj in the decision network, the lexicographic order of
. L .
the vector representation of the states must be such that s; <'s;. Thisisa
restriction on the state definition.
To illustrate these concepts, consider Fig. 2 in which the network of
the path problem has been rotated 45°.

e
o o220

I I I . =

0 1 2 3 4

Figure 2. Rotated path problem

Referring to thisfigure, assume the state definition:

S =(sy, Sy) Wheres; = x4-coordinate and s, = X,-coordinate.

The states are listed below in increasing lexicographic order

Dynamic Programming Methods

S ={(0,0),(1,-1), (1, 1), (2,-2), (2,0, (2 2), (3 -1, (3, 1), (4 0)}.

It is apparent that this ordering includes the ordering represented by the
network. The lexicographic order isacomplete order and the state order
defined by the decision network isa partial order. Itisonly required that
the lexicographic ordering of the state values include the partial order.

As an example of astate definition that does not satisfy the
requirement, redefine the state variables of the path problemin Fig. 2 as
S, = X,-coordinate and s, = X;-coordinate.
This state space ordered lexicographically is
S ={(2,2), (-1, 1), (-1, 3), (0,0), (0, 2), (0, 4), (1, 1), (1, 3), (2, 2)} .
Itisclear that this order does not include the partia order of the decision

network.

It isaways possible to define (and arrange) the state variablesin a
natural way so their values indicate the proper order. For problems
involving stages, the requirement is easily fulfilled if the first state variable
is the stage number and the stages are numbered in the forward direction.

Sate Generation 7

20.2 State Generation

The ssimplest dynamic programming al gorithms require that the state values, and hence the
state space, be generated and stored prior to initiating the computations. More efficient
procedures generate states and determine optimal decisions simultaneously. We describe
both approachesin later sections, but here we consider the generation process independent
of the solution process.

Recall that the m-dimensional vector s = (sy, S,, ..., S, uniquely identifies a state.

To provide procedures for generating and storing states that will work for awide variety of
problem classes and solution techniques, it is necessary to know something about the
values that a state variable may assume. Because we are considering only state spaces that
arefinite, it must be true that the values a particular state variable, say s;, may assume must
be discrete and finite in number. For instance, s; might take on al integer values from O to
10. Alternatively, s; might assume only even valuesin the range O to 10, or perhaps all

valuesthat are multiples of 0.5. Although there will be afinite number of valuesfor a
particular state variable, they are not restricted to consecutive integers asis often assumed
in elementary discussions.

We now describe two generation procedures. Thefirst will exhaustively generate
all states whose values are within specified ranges of evenly spaced intervals. The second
will generate only those states that are “reachable”’ from theinitial statesin|.

Exhaustive Generation

When each state varidble s; is discrete and has a given finite range R(i), the

set of all statesis simply the set of all possible combinations of the state
variable values. Assume R(i) isdivided into intervals of equal length and let

H(@) =Max{s :i=1,...,m},

L) =Min{s :i=1,...,m},
d(i) = difference between successive values of s;.

ThenR(i) = H(i) — L(i) and there are R(i)/d(i) + 1 feasible points within this
range. A smpleincrementing routine can be used to generate all valuesof s
over therangesR(i), i = 1,...,m. Thetotal number of statesis

ASHG-LO ,
O a

i=1

If R(i) isnot evenly divided, it would be necessary to enumerate
each feasible value separately. The same routine, however, could be used
to generate the state space.

8 Dynamic Programming Methods

Forward Generation

In many problems the values of the state variables may not have the regu-
larity required by the exhaustive generation procedure. For example, the
range of a state variable may depend on the values of the other state
variables. It isalso possible that large numbers of states generated may not
actually be realizablein a specific problem situation. The set of all states
provided by exhaustive generation can be prohibitively large so any
reduction that can be achieved by invoking problem-specific logic can lead
to significant computational savings.

In this section, we provide an algorithm that only generates states
that can be reached from agiven set of initial states. A reachable stateis one
that lies on a path generated by a feasible sequence of decisions starting
from afeasibleinitial state. For the path problem in Fig. 2 only the states
shown in the figure are reachable from the initial state (0, 0). States such as
(1, 0) are not reachable and so will not be generated.

The algorithm begins with the set of initial states|. Referring to the
network in Fig. 2, | ={(0, 0)}. From each initial state, al possible
decisions are considered. The combination of decision d and state s is used
in the transition function to define anew reachable state: s' = T(s, d). This
state is added to the state spaceif it is feasible and has not been generated
previously. When all the decisionsfor thefirst initial state have been
considered and all states reachable from that state have been generated, the
procedure chooses the next lexicographically larger state and generates all
feasible states reachable fromiit.

The computations continue until all states have been considered, and
will eventually terminate due to the finiteness of the state space and the use
of lexicographical ordering. The processis called forward generation
because states are generated using the forward transition function. Note that
astates' generated by the transition function will always be lexi-
cographically larger than the base state s from which it isgenerated. This
assures that no reachabl e states are missed.

Algorithm

Step 1. Start with aset of initial states| and store them in memory. Let the
state space S = |. Because of our labeling convention, the statesin
| arelexicographically smaller than any states that can follow them
on adecision path. Let s bethelexicographically smallest statein
S.

Step 2. Find the set of decisions D(s) associated with's. For each decision

d T D(s) find the new state s' using the transition function s' =
T(s, d). Search the state space to determineif s' has aready been
generated. If so, continue with the next decision. If not, add the
state to the state space; that is, put S = S E {s'}. After all
decisions associated with s have been considered go to Step 3.

Sate Generation

Step 3. From those dlementsin S, find the next lexicographically larger
statethan s. If thereisnone, stop, the state space is complete.
Otherwise let this state be s and go to Step 2.

For the network in Fig. 2, Table 1 highlights the results of the
algorithm at each iteration. The asterisk (*) in each column identifies the
base state s as the algorithm enters Step 2. The states following the base
state are those generated at the current iteration.

Table 1. Sequence of states obtained by forward generation

Iteration #

1 2 3 4 5 6 7 8 9

(0,0° (00 (000 (0,00 (000 (00 (0,00 (00 (00
1-1)" 1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1)

1) (LY @1 @) LY (1D 1L (L1
2-2) (-2 (2-2) (2-2) (2-2) (2-2) (2-2)

(20 (20 (20" (200 (20 (20 (20)

22 (22 22" (22 (22 (22

(3-1) (3-1) (3-1)" (3-1) (3-1)

B31) (GB1) G (Bl

(4,00 (4,0

From the table we see how the state space grows as the algorithm
proceeds. The complete state space is obtained at iteration 9. Thiseventis
signaled by the fact that there is no state lexicographically greater than (4,0).

The vaidity of this procedure depends on the fact that if s is
generated from s using the transition function T(s, d), we are assured that
s' » s. Also, sinceall states that have yet to be considered for expansion
arelexicographically greater than s, none of them can create a state smaller
thans. Therefore, considering the statesin the order prescribed by the
algorithm will generate all states that are reachable from theinitia statesin|.

A second example illustrates the benefits that can be achieved in state
space reduction by using the forward generation procedure instead of the
exhaustive procedure. To begin, consider the following resource allocation
problem with binary decision variables. No specific valuesfor the objective
coefficients are given because they have no bearing on the size of the state
space.

10 Dynamic Programming Methods

10

. . [«
Maximize z= @ ;X

i=1

subject to
OXq + 7X5 + 6X3 + 8%, + 3Xg + 3Xg + OX; + OXg +7X9 £20
OXq +4X5 +5X3 + X4 +8Xg +Xg +4X; +8Xg + 1Xg £ 20

X5 +8x3 +6x4 +9x5 +6x6 + 5x7 +7x8 +7x9+3x10 £ 20
X; =0orl, j=1,...,10

For aresource alocation problem with m constraints and n
variables, the number of state variablesism + 1. The constraints represent
limits on resource usage. I1n the DP model presented in Chapter 19 for this
problem, thefirst state variable s; represents the index of the x variables. In
general, s; ranges from 1 ton+1, with s; = n+1 signaling afinal state. For
theexample, L£ s, £ 11. State variables 2 through m + 1 correspond to
constraints 1 through m, respectively, with s; indicating the amount of the
(i-1)th resourceb;_; used by apartial solution prior to the current decision.

When the exhaustive procedure is used, the total number of statesis|S| =
n(b;+1) --- (b,+1) whichisan exponentia function of m. Thisvaueis

(11)(21)(21)(21) = 101,871 for the example2.

To highlight the differences in the size of the state space as more
constraints are added, we first consider the problem with only constraint 1,
then with constraints 1 and 2, and finally with all three constraints.

For the forward generation procedure theinitial stateiss = (1, O) for the
one constraint case, s = (1, 0, 0) for the two constraint case ands = (1, O,
0, 0) for the three constraint case. Table 2 shows the number of states
identified using the exhaustive generation and forward generation methods.
If we consider the latter, there are only two states reachable from s = (1, 0,
0, 0). To seethis, we use the transition function from Table 5 in the DP
Models chapter to determines’. Given s = (1, 0, 0, 0), two decisions are
possible, either d = 0 implying item 1 is excluded (x, = 0) or d = 1 implying

item Lisincluded (x; = 1). When d=0thestateiss; = (2, 0, 0, 0).
Alternatively, when d = 1 the state iss'2 =(2,9,9, 0). All other states of
theform (2, s,, S3, S4), Where 1 £ s,, S,, 54 £ 20, are unreachable from (1,

0, 0, 0) and so are not generated. The exhaustive procedure enumerates
them all.

2 The Teach DP add-in exhaustive enumeration option includes only theinitial states for s; = 1. It
computes 92,611 states for this example.

Sate Generation 11

Table 2. Comparison of generation methods

Number of Exhaustive Forward generation
constraints generation of states of states

1 231 130

2 4,851 409

3 101,871 436

Theresultsin Table 2 clearly demonstrate the exponentia growth in
the state space when the exhaustive procedure is used, underscoring the
impracticality of this approach for al but the smallest knapsack problems.
Computation times are generally proportional to the number of states. Thus
alarge state space is expensive in both computer time and storage.

Considering only reachable states asin forward generation yields a
much smaller state space. Although the growth indicated in Table 2 is
modest, it can still be exponential in the worst case so it would be
inappropriate to generalize from the example. Nevertheless, it isinteresting
to consider the effect of the number of constraints on the number of feasible
solutions and the number of states required to represent them. When there

are no constraints the binary allocation problem has 2" feasible solutions,
where n isthe number of variables. When asingle constraint is added, the
number of feasible solutions must be reduced if the constraint has any effect
at all. Asadditional constraints are added, the number of solutions that
satisfies all the constraints must decline or at least grow no larger. Thus
despite the fact that the dynamic programming model becomes all but
impossible to solve when only afew constraints are present, the actual
number of solutions that are candidates for the optimum declines with the
number of constraints.

The forward generation procedure only generates feasible states.
The reason this number does not decline with the number of constraintsis
that fewer feasible decision sequences can be represented by the same
states. With asingle constraint alarge number of feasible sequences or
partial sequences may have the same resource usage. With two constraints,
two solutions that use the save amount of the first resource may use
different amounts of the second resource thus generating two states rather
than one.

No general statement can be made concerning the growth in the
number of reachable states as afunction of the number of constraints. Itis
generally true, however, that the number of reachable states will be
considerably less than the number of states generated exhaustively. The
savingsisat acost of additional computer time, since forward generation
requires repeated use of the transition function while exhaustive generation
does not. Whether the expenseisjustified depends on the complexity of the
transition function and the number of reachable states. For some problem
classes forward generation will result in no savings at al, while for othersit
will be decidedly effective.

12 Dynamic Programming Methods

20.3 Backward Recursion

The principle of optimality leads to the computational procedures of dynamic programming.
The most common, called backward recursion, is described in this section. Asdefined in
the DP Models chapter, the problem isto find a sequence of alternating states and decisions
fromaninitia statein| to afina statein F. The sequenceiscalled apath. Our goal isto
determine the optimal path.

The Recursive Equation

L et n be the dimensions of the decision space and let Pj denote thejth path
through the state space; P isidentified by the sequence s;, dl, Syj-
dojs - Spjp Apyjr Sy, o Where Sn+1,j Isafinal state. Assumefor purposes
of pr&entatl on an additive objective function of the form

2(Py) = g zs;j, djj) +f(speq,)
i=1
We assume our goal isto minimize the objective.
The optimal path P is the one that solves the following problem
z(P") = Minimize; 5 z(P;)

where Jisthe set of all feasible paths. However, thisis only a conceptua
representation of the problem because the set J is not known. We do not
search explicitly over al feasible paths but try to generate the optimal path
algorithmically. Therefore, thereis no need to refer to a specific path j in
the presentation so we will drop the subscript j from the state and decision
Vectors.

Definef(s) asthelength of the optimal path from state s to afinal
states- 1 F. Theinitial stateiss, and theinitial decisionisd,. The state
following d, is determined by the transition function to be

S, =T(sy, dy) (1)

The principle of optimality says that whatever the first decision isthe
remaining decisions should be made optimally. Thus given d,, the cost of

the optimal pathis
r(sq, dq) © z(sq, dq) +f(sy)

where s, is determined by Eq. (1). The optimal initial decision d, isfound

by evauating r(s,, d) for all feasible decisions d I D(s,) and choosing the
one that yields the minimum cost. Thus we must solve the following
optimization problem, typically by enumerating all elements of D(s,).

f(s9) =Minimize{f(s;, d) :d T D(sp)}

Backward Recursion 13

= Minimize{ z(s, d) + f(s,) :d T D(s)} 2)

What is curious about problem (2) isthat f(s,) depends onf(s,).

Functions that depend on themselves are called “recursive.” To solvethis
recursive equation for s, it is necessary to know the values of f(-) at all

states s, that can be reached from s; with afeasible decision. A similar

recursive equation can be derived for each successor state. In general, the
recursive egquation for state s can be written as

f(s) = Minimize{r(s, d):d T D(s)}
where r(s, d) =z(s, d) + f(s')
and s'=T(s, d)
o) f(s) = Minimize{ z(s, d) +f(s) : d T D(s)}. (3)
Wecall z(s, d) the decision objective, r(s, d) the path objective for decision

d taken from state s, and f(s) the optimal value function for state s.
Equation (3) isreferred to asthe recurrencerdation.

Solving the Recursive Equation

For an acyclic network the recursive equation can be easily solved by
starting at the final statesin the set F and working backwards. Before
beginning the computations, it is necessary to specify the boundary
conditionswhich follow directly from the statement of the problem or from
the definition of f. When working backwards, values of f(-) must be

assigned for all sFT F. For an additive path objective function, we often
havef(sg) = 0 but the assgnment might actualy be afunction of s..

Once the values of the terminal states are known, the recursive
equation (3) can be solved for al states whose decisions lead only to fina
states. For an acyclic network, there must be some states that have this
property. The process continues until the optimal value function f(s) is

determined for eachs 1 S. When the state variables are defined so that
they satisfy the requirements of Section 20.1, the recursive equations can be
solved by considering the states in reverse lexicographic order.

Associated with each state is an optimal decision or policy, d”(s).
Thisisthe decision that optimizes the recursive equation. The function of
optimal decisions defined over the state space is called the optimum policy
function.

The process of solving Eqg. (3) for an acyclic network is called
backward recursion. The procedure moves backwards through the decision
network (in the reverse direction of the arcs) until the optimal path value and
accompanying decision is found for every state.

Dynamic Programming Methods

Algorithm for Backward Recursion

Step 1. Find the state with the largest lexicographic value. Let this be state
S.

Step 2. If the stateisafina state, assign it avalue f(s) by arule or equation
peculiar to the problem being solved. If itisnot afina state, solve

recursive equation (3) for f(s) to obtain d” (s). Store these values
for future use.

Step 3. Find the next lexicographically smaller state than s.

i. If none exists, stop, the backward recursion is complete.
Solve

f(s,) =Minimize{f(s) :s1 1}
to determine the optimal path value and theinitial state s, from

which the optimal path originates. Perform forward recovery
to determine the optimal sequence of states and decision.

ii. If another stateisfound, let it be s and go to Step 2.

Forward Recovery

The agorithm finds the optimal path from every stateto afinal state but is
available only implicitly through the policy function. Given aninitial state

sS4, thefirst decision on the optimal path is d’ (S1)- Thenext state on the
optimal path isfound by evaluating the transition function

S, =T(sy, d7(s))

to gets,. The next decision isthe optimal policy for s, given by d’ (S9).
These operations proceed in an iterative manner, sequentially using the
transition function and the optimal policy function until afinal stateis
encountered (there may be severd fina states but we are only interested in
the one on the optimal path). We call thisforward recovery of the optimum
because the cal culations proceed in the forward direction (in the same
direction as the arcs) through the decision network. Thus backward re-
cursion must be followed by forward recovery. Note that the optimal path
isavailablefor every state. Dynamic programming solves not one problem
but many problems, onefor every sinS. Thisiswhy it is so important to
reduce the size of the space as much as possible.

Summary of Notation Associated with Backward Recursion

Optimal value function:
f(s) = value of the optimal path from state s to any fina state
Path return:

r(s, d) = value of the path starting from state s with the first decision
d such that subsequent decisions are optimal with respect to
s', the state reached from s with decision d

Backward Recursion 15

Optima policy or decision for state s:
d"(s) wheref(s) = r(s, d"(s))

Tabular Format for Backward Recursion

To organize the computations, we introduce a tabular format that
summarizes the results at each iteration. All the information necessary to
perform the steps of backward recursion and recover the optimal solution
upon termination isincluded. The column headings are listed below. Of
course, other formats could be adopted for specific problem classes.

(1)

)

3)

(4) (5) (6) (7) (8) (9)

Index

d

s' z f(s') | r(s,d) | f(s) | d"(s)

Caol.

Caol.

Caol.

Col.

Col.

Caoal.

Caoal.

Caol.

Caol.

)

)

©)

(4)

©)

(6)

(7)

(8)

(9)

Index: This column assigns a numerical index to each state asitis
considered. The number 1 will be assigned to thefirst state, 2 to
the second state, and so on.

s: Thisisthe vector of state variables describing the state under
consideration.

d: Thisisthe vector of decision variables describing the decision
under consideration. For each value of s, all the decisionsin the
set D(s) will be listed.

s': Thisisthe state that is entered when decision d istakenin
states. It isdetermined by the transition function T(s, d).

Z: Thisisthe decision objective. It will, in general, be afunction
ofs,dands'.

f(s'): Thisisthe optimal value function for states’. Givena
current state s, its value will have been determined at a previous
iteration.

R(s, d): Thisisthe path return obtained by making decisiond in
states and thereafter following the optimal path from state s'.
With an additive path objective, this column will be the sum of
columns (5) and (6).

f(s): Thisisthe optimal value function for state s. It isobtained
by taking the minimum (or maximum) of the valuesin Col. (7)
for astate s, and provides the solution to the recursive equation.

d"(s): Thisisthe optimal policy for state's. It is the decision for
which the optimum was obtained in determining the value in Col.

(8).

16 Dynamic Programming Methods
Example 1
To illustrate the use of thisformat, the simple path problemin Fig. 3is
solved to find the shortest path from state (0O, O) to state (4, 0). Although
we considered this problem in Chapter 19, the mode! for the rotated
problem is dightly different because we have added a component to
describe the recursive equation (see Table 3).
Xo A
2 4+ /@Q\
1 . .
@/@\ PO
0 (® ©
AN
14
9)
24
| | | | —
0 1 2 3 4 X1
Figure 3. Rotated path problem with arc lengths assigned
Table 3. Backward recursion model for rotated path problem
Component Description
State The states are the nodes of the network identified by their
coordinates.
S =(Sy, Sy), Where s; = x;-coordinate and s, = X,-coordinate
Initial state set I ={(0, 0)}
Final state set F={(@4,0)}
State space S={(0,0), (-1, (11),(2-2),(20),(2 2,3, -1, (3,1, (40}
Decison d = (d), where d indicates the direction traveled

Feasible decision set

l+1 go up at +45°
d=
—1 go down at —45°

D(s)={+1,-1:s'1 S}

Backward Recursion 17

Transition function

Decision objective

Path objective

Fina value function

Recursive equation

s' =T(s, d) wheres; =s; +1ands, =s, +d

Z(s, d) = a(s, d), arclength indicated in Fig. 3

Minimizez(P)= Q& zsd)+ f(s;)
sl Sdi D(s)

wheress; issome statein F

f(s)=0 forsi F
Specification of boundary conditions.

f(s) = Minimize{ a(s, d) + f(s') : dT D(s)}

and for

The calculations for the example are given in Table4 which is

constructed by listing the states in the order in which they must be
considered for backward recursion; that is, in reverse lexicographic order.
For each state, al the feasible decisions are listed together with al the
information necessary to solve the recursive equation. For example, let us
consider s = (3, 1) whichisnode 8 in Fig. 3. The only feasible decision at
thisnodeisd =—1 so it is ot necessary to solve Eq. (3). Thetransition
leadstos' = (4, 0) whichisafina state. Thereturn function is computed
asfollows: r(s, d) = &as, d) + f(s') =a((3, 1), -1) +f((4,0)) =9+ 0=09.
Thusf(3,1) =9. Thesameanaysisappliesat s =(3,-1). Ats =(2, 0),
the computations are more informative because there are two possible
decisions. The components of the transition function are s'1 =5, +1=3

ands'2:32+d:dsowhend: 1,s' =(3, 1) andwhend=-1,s' = (3,
—1). We now compute the corresponding return functions. For

d=1: r((2,0),1) = a(2,0), 1) +(3, 1) =3+9=12,

d=-1: r((2,0),-1) = a(2, 0), -1) + (3, 1) =5+ 6 = 11.

Solving recursive equation (3) gives

1((2,0),1) = 12

f(2,0) = Minimize%’r((r’o)’_l) _ 11% =11

implying that the optimal decision vector at thisstateisd” (2, 0) = —1.

In general, when all the relevant values of r(s, d) are available, the

recursive equation (3) is solved to find the optimal value function f(s) and

the optimal policy d” (s) for each state. The bold arrowsin Fig. 4 depict the
optimal policy at each node.

18

Dynamic Programming Methods

Table 4. Backward recursion for the path problem

Figure4. Optimal policy using backward recursion

) 2 ©) (4) ©) (6) (7 8)
Index s d s' z f(s') r(s, d) f(s) d’(s)
1 (4,00 — 0 ¥
2 3,1) -1 (4, 0) 9 0 9 9 -1
3 3,-1) 1 (4, 0) 6 0 6 6 1
4 (2,2 -1 (3, 1) 2 9 11 11 -1

5 (2, 0) 1 (3, 1) 3 9 12
-1 (3,-1) 5 6 11 11 -1
6 (2,-2) 1 (3, -1) 9 6 15 15 1
7 (1, 1) 1 (2, 2) 5 11 16
-1 (2, 0) 3 11 14 14 -1
8 (1,-1) 1 (2, 0) 7 11 18 18 1
-1 (2,-2) 4 15 19
9 (0, 0) 1 (1, 1) 8 14 22 22 1
-1 (1,-1) 5 18 23
I I I I o
0 1 3 4 X1

Once the table has been constructed, the only remaining task isto
recover the optimal path from the initial node. Itslength has already been
determined and appears as the last entry in column (8). In particular, f(0,0)
= 22. Figure 4 showsthat an optimal path isavailable for every stateto a

fina state. Thisisaways the case when backward recursion is used.

Backward Recursion 19

The forward recovery algorithm can aso be implemented in tabular

format with the following four columns: s, d*(s), s' and z(P"). Table5
shows the results for the example. Thefirst entry for s isastatein the

initial set 1. The value of d”(s) for this stateis found in Table 4 to be 1.
The transition equation then determines the next state s' which is equal to

(1,2). Thisstateislisted in the third column of thetableand also ass in the
next row. The forth column lists the cumulative path length, whereit is

seen once again that z(P*) = 22. The process continues until s' isamember
of thefinal state set F. When this event occurs, the solution has been
completely determined. The optimal path can be read from the first and
second columnsin the table. The solution process of backward recursion is
always followed by forward recovery.

Table 5. Forward recovery

s d’(s) s' z(P")
(0, 0) 1 (1, 1) —
(1, 1) = (2,0) 8
(2,0) = (3, -1) 11
(3,-1) 1 (4, 0) 16
(4, 0) — — 22

20 Dynamic Programming Methods

20.4 Forward Recursion

Instead of starting at afinal state and working backwards, for many problemsit is possible
to determine the optimum by an opposite procedure called forward recursion. Backward
recovery isthen used to identify the optimal path. The procedure may be more convenient
for some classes of problems, but for those in which the fina state set is unknown, it isthe
only feasible approach. Forward recursion also leadsto avery powerful procedure called
reaching, described in the next section.

Backward Decision Set, Transition Function and Decision Objective

The backward decision set is denoted for each state by Dp(s) with the
subscript “b” being used to distinguish it from the comparable set D(s)
previously defined for backward recursion. D, (s) isthe set of decisions

that can be used to enter state s. For the simple rotated path problem
depicted in Fig. 3, Di,(s) ={-1, +1}, where d = -1 implies entering s from
above andd = +1 implies entering s from below. Note that the elements of
D(s) and D\,(s) are the same for this path problem but their meaning is quite
different; D(s) isthe set of decisionsthat lead out of state s and D(,(s) isthe
set of decisionsthat lead in.

The backward transition function is defined as
s, =Ty(s, d), whered T Dy(s).

The function T, determines the state that came before s when the decision
madeto reach states isd. We use sy, to denote the previous state. Very

often the backward transition function can be obtained directly from the
forward transition function. For some problems, the forward transition
equations’ = T(s, d) can be solved for sintermsof s' and d.
Substituting first s, for s and then's for s, one obtains the backward

trangition function. For instance, the rotated path problem has the forward
trangition function components

s;=s;+lands,=s,+d.
Solving these equationsfor s interms of s' yields

s;=s;—lands,=s,—d.
Substituting first s, for s and thens for s', we obtain

Spp =Sy —landsy, =s,—d.

These equations give the backward transition function for the rotated path
problem.

For agiven definition of the state variables, it is not always true that
there exists both forward and backward transition functions for a particular
problem. For instance, consider the path problem with turn penalties
(Section 19.5). The components of its forward transition function are

Forward Recursion 21

s;=8,+1, s,=s,+d, s3=d.

Thusit is not possible to solve for sy interms of s" and d for the simple
reason that s, does not appear in these equations. A little reflection will

show that it isimpossible to know what the previous state was (in terms of
the third state variable) given the current state and the decision made to reach
it. Defining the set of state variables differently, though, will provide both
forward and backward transition functions. For the turn penalty problem,
the first two state variables remain unchanged, but the third state variable
Sy,3 Should be defined as the direction to be traveled rather than the direction

last traveled.

The backward decision objective, z(s),, d, s) istheimmediate cost
of decisiond when it leadsto state s from state s,. For most problems of
interest, z, isasimple function of s, and d.

Forward Recursive Equation

The forward recursive equation is written
fr(s) = Minimize{r(s, d) :d T Dy(s)}
where ry(s, d) =zy(d, s) + f(sp)
and Sp = Ty(s, d)

S0 f(s) = Minimize{ z,(d, s) + f(Sp) :d T Dy(s)}. (4

The factors in these relationships have analogous definitions to their
counterparts in the backward recursive equation. In particular, f,(s) isthe

cost of the optimal path arriving at s from an initial state as a consequence of
decisiond. Sometimesit is convenient to express the decision return asan
explicit function of s, Inthat case, we use the notation z(sy,, d, s).

Thefirst stepin solving (4) isto assign valuesto theinitia states
(those with no predecessors). Thisis equivalent to specifying the boundary
conditions. Then the equation can be solved for each state that is an
immediate successor of theinitial states. The procedure continuesin the
forward direction until all states have been considered. The policy function

d’ (s) now holds the information on the optimal decision entering each state
s1 S.

The optimum isidentified by a backward recovery procedure.
Starting at the final state associated with the minimum cost, the policy
function identifies the optimal decision that led to that state. The backward
trangition function then identifies the predecessor state in the optimal path.
The policy function, in turn, identifies the optimal decision entering that
state. The process continues sequentially using the optimal policy function
and the backward transition function until an initial state is encountered. At
this point the optimal path to the specified final state from an initial state has
been found. Note that the forward recursion procedure implicitly discovers
the optimal path to every state from an initia state.

22 Dynamic Programming Methods

Example 2

For the rotated path problem described in the previous section, Table 6
provides the additional definitions associated with forward recursion. The
calculations are shown in Table 7. Note that thistable is constructed by
listing the states in the order in which they must be considered for forward
recursion, that is, in lexicographic order. All the calculations required to

obtainf,(s) and d’(s), the optimal path value and the optimum policy,
respectively, are included.

Table 6. Forward recursion model for rotated path problem

Component Description

Backward decision set Dy(s) ={+1, -1}
Backward trangition function | s, =Ty(d, s)
Spp =Sy~ landsy, =s,—d

Backward decison objective | z(s, d) = &(s, d), where &(s, d) isthe length of the arc
entering s from decision d, taken from Fig. 3.

Initial value function f(s)=0 forsT |
Specification of boundary conditions.

Forward recursive equation fi(s) = Minimize{ z (s, d) + f(sp) :d T Dy(s)}

To better understand how the calculations are performed, assume
that weareat s = (3,1) whichisnode 8in Fig. 3. The decision set D,(3,1)

={1,-1} and the backward transition function for each of the two state
componentsiss,; =s; —lands,, =s,—d. Tosolvetherecursive

equation (4) if isfirst necessary to evaluate the return function for all d 1
Dy(3, 1). Thetwo cases are asfollows.

d=1P s,=(2,0) and
n((3.1), 1) = &(2,0), 1) + f(2,0) =3+ 11 =14
d=-1b s,=(2,2) and

r, ((3.1), 1) = &(2,2), -1) +f(2,2) =2+ 13=15

Combining these results leads to

Forward Recursion 23

o i,rb((3’1)’1) =14 (
f(3,1) = M|n|m|ze%rb((3’1),_1) _ 15% = 14

so the optimal decisiond”(3,1) = 1 which meansit is best to reach (3,1)
from (2,0). Figure 5 depictsthe optimal policy for each state, which isthe
arc that should be traversed to enter that state. By implication, an optimal
path is available for every state from theinitial state.

Table 7. Forward recursion results for the rotated path problem

(1) 2 3 (4) (5) (6) (7) (8) 9)
Index S d Sp z, fo(Sp) Trp(s,d) f(s) d*(s)
1 (0, 0) — 0 ¥
2 (1,-1) -1 (0, 0) 5 0 5 5 -1
3 (1,1 1 (0, 0) 8 0 8 8 1
4 (2,-2) -1 (1,-1) 4 5 9 9 -1

5 (2, 0) 1 (1, -1) 7 5 12
-1 (1, 1) 3 8 11 11 -1
6 (2, 2) 1 (1, 1) 5 8 13 13 1
7 (3,-1) 1 (2,-2) 9 9 18
-1 (2,0) 5 11 16 16 -1
8 (3, 1) 1 (2, 0) 3 11 14 14 1
-1 (2,2 2 13 15
9 (4,0) 1 (3,-1) 6 16 22 22 1
-1 (3,1 9 14 23

24 Dynamic Programming Methods

X, i
2 4L
1 ——
(8)
0T (5)
14
24
i i i i i -
0 1 2 3 4 X1

Figure 5. Optimal policy using forward recursion

The length of the optimal path isthe last entry in column (8) of Table
7; in particular, f,,(4,0) = 22. The optimal solution isidentified by using a
backward recovery algorithm. The procedure starts at the final state and
follows the optimal policy backward until an initial state is encountered.
The computations are given in Table 8. Thelast column lists the cumulative
path length, confirming once again that when we arrive at the initia state,

z(P") = 22.

Table 8. Backward recovery

s d*(s) Sh z(P")
(4, 0) 1 (3,-1) —
(3,-1) -1 (2, 0) 6
(2, 0) -1 1, 1) 11
(1, 1) 1 (0, 0) 14
(0, 0) — — 22

Reaching 25

20.5 Reaching

Backward and forward recursion are known as pulling methods because the optimal

decision policy d” (s) tells us how to pull ourselvesinto a particular state from a
predecessor state. Reaching is an aternative solution technique that combines the forward
generation of states with forward recursion on an acyclic network. In effect, the optimal
decision policy is derived while the state space is being generated, a concurrent operation.
When al the states have been generated, the optimization is complete. The solutionis
found with the backward recovery procedure.

Reaching can be extremely efficient especially when paired with bounding
techniques as discussed presently; however, it may not be appropriate for all problems.
The principa requirement is the availability of both forward and backward transition
functions and the forward recursive equation. At the end of the section, several situations
are identified in which reaching outperforms both backward and forward recursion.

Development

The forward recursive equation (4) can be written as
fr(s) = Minimize{ z (s, d, s) + fi(sp) :d T D(s), s, =Ty(s, d)} (5)

In this section we write the decision objective explicitly in terms of the
previous state s, and the current state's. A few substitutions result in a

more convenient form for the computational procedure outlined below.
Note that

Z(Sp, d, s) = 2z(s, d, S)
andthat sy =Ty(s, d), s=T(s, d).
Using these relationships, we write (5) alternatively as
fr(s) = Minimize{ z(sy,, d, s) +f,(s,) :dT D(sp), s =T(s,, d)} (6)

where the minimum is take over al states s, and decisionsd at s, that lead
to the given state s.

The strategy behind reaching is to solve Eg. (6) while the states are
being generated in the forward direction. Recall that the forward generation
procedure starts with the set of initial states | and the boundary conditions

f(s)foralsT I. Forany states1 S and feasibledecisiond I D(s), a

new states' is created by the transition function T(s, d). Re stating (6) in
these termsfirst requires the replacement of s by s', and then the
replacement of s, by s. Thisyields

f(s') =Minimize{ (s, d, s') + f,(s) :d T D(s), s' =T(s, d)} (7)

Note that the minimum istaken over al s such thats' can be reached from s
when decisiond T D(s) istaken.

26

Dynamic Programming Methods

When anew state s’ isfirst generated the temporary assignment

f(s) = (s, d, ') +f(s)

ismade. Thisvalueisan upper bound on the actual value of fi,(s") because

it isonly one of perhaps many possible ways of enterings’. Asthe
generation process continues a particular state s' may be reached through
other combinations of s and d. Whenever a state that already existsis gen-
erated again, the current path value is checked against the cost of the new

path just found. If the new path has alower value, fr(s') andd”(s') are
replaced. That is, when

fo(s') > (s, d, ') + f,(s)

for somes' = T(s, d), we replacefb(s') with z(s, d, s') + f,(s) and d'(s")
withd.

Reaching Algorithm

The generation process starts at the initia statesin | and proceeds lexico-
graphically through the list of states already identified. For algorithmic
purposes we will use the same symbol S used to denote the complete state

space, to represent thislist. When aparticular states 1 S is selected for
forward generation, the true value of f,(s) must be the value of the optimal

path function as determined by (7). Thisfollows because all possible paths
that enter s must come from a state that islexicographicaly smaller than s.
When s isreached in the generation process, al immediate predecessors of

s must have been considered in the determination of fb(s') so this must be
the optimal value.

The algorithm below provides the details of the reaching procedure.
As can be seen, it simultaneously generates and optimizes the state space.

Step 1. Start with aset of initial states| and store them aslist in memory.
Cdl thelist S. Initidizef,(s) foralsT 1. Thesevalues must be

given or implied in the problem definition. Lets1 S bethe
lexicographically smallest state available.

Step 2. Find the decision set D(s) associated with s. Assume that there are
| feasible decisions and let

D(s)={dy, d, ..., d;}.
Setk = 1.

Step 3. Let thedecisiond = dy and find the successor state s’ to s using
the forward transition function:

s' =T(s, d).

Reaching 27

Example 3

Step 4.

Step 5.

Step 6.

If sisnot feasible go to Step 4; otherwise, search thelist S to

determineif s' has aready been generated.

i. Ifnot,putS- SE({s'},d (s)~ d,andcomputethe
initia estimate of the optimal path valuefor state s'.

fi(s) = 2(s, d, 8') + fis)
ii. Ifs'T Sindicating that the state already exists, whenever
f(s) > z(s, d, ') +f(s)

putf(s’) = z(s, d, s') +f(s) andd’(s") - dandgoto
Step 4.

Putk - k+1. If k>1, put f(s) - fb(s) and go to Step 5 (all
feasible decisions have been considered at s so we can examine the
next state; also the optimal path to s is known).

If KE 1, goto Step 3.

Find the next lexicographically larger state than s onthelist S.
Rename this state s and go to Step 2. If no state can be found go to
Step 6.

Stop, the state space is complete and the optimal path has been
found from al initial statesin| to all statesinS. Let F 1 S bethe
set of final states. Solve

fr(sp) = Minimize{f(s) :sT F}

to determine the optimal path value and the fina state s on the

optimal path. Perform backward recovery to determine the optimal
sequence of states and decisions.

Consider again the path problem in Fig. 3. Applying the reaching algorithm
to this problem gives the results shown in Table 9. We have rearranged and
renamed some of the columnsto better reflect the order of the process.

28 Dynamic Programming Methods
Table 9. Reaching solution for rotated path problem
(1)) 3 (4) ©) (6) (7) (8) (9)
Index S f,(S) d z s' r(s, d) fb(s') d’(s")
1 (0,0) 0 -1 5 (1,-1) 5 5 -1
+1 8 (1,2 8 8 +1
2 (1,-1) 5 -1 4 (2,-2) 9 9 -1
+1 7 (2,0) 12 12 +1
3 (1,2 8 -1 3 (2,0) 11 Min(12,11)=11 -1
+1 5 2,2 13 13 +1
4 (2,-2) 9 +1 9 (3,-1) 18 18 +1
5 (2,0) 11 -1 5 (3,-1) 16 Min(18,16)=16 -1
+1 3 3,1 14 14 +1
6 (2,2 13 -1 2 3,1 15 Min(15,14) =14 +1
7 (3,-1) 16 +1 6 (4, 0) 22 22 +1
8 3,1 14 -1 9 (4, 0) 23 Min(22,23)=22 +1
9 (4,0) 22

and

We begin the process at the initidl state s = (0,0), with f(0,0) = 0.

Two decisions are possible: d =—1 and d = 1. The former leadsto s'
(1,-1) and the latter tos' = (1,1). Both of these states are added to the list

S and temporary values of f p(S") are computed:

f(1,-1) = a(0,0), -1) + f,(0,00=5+0=5

f(1, 1) = a((0,0), 1) +f,(0,0)=8+0=8

At iteration 2, we move to the next lexicographically larger state on
S whichiss =(1,-1). Thevalue of f,(1,-1) isfixed to fb(l,—l) =5since
the temporary value must be the solution of the forward recursive equation.

The corresponding value of d” (1,~1) is also fixed to its current value. Once
again, we consider the two possible decisionsd = —1 and d = 1 and use the
forward transition function to generate states s’ = (2,-2) and s’ = (2, 0),

fo(2-2) = a(1,-1), -1) +f (1-1) =4 +5=9

respectively. The corresponding values of fb(s') are

Reaching 29

f(2,0)=a((1,-1), 1) +f,(1,-1)=7+5=12,

This completesiteration 2 so we can fix f,(1,-1) = 5 and d'(1,-1)
=-1. ThedtatelistisS = {(0,0), (1,-1), (1,1), (2,-2), (2,0)} and we
movetos = (1, 1), the next larger state as determined by the lexicographical
order. Reaching out from (1, 1) with decisonsd=1andd = -1,
respectively, leads to one new state s' = (2, 2) and one previously
encountered state s’ = (2, 0). For s' = (2, 2) we have

fy(2,2) =a(1,1),1) +f,(1,1)=5+8=13
and for s’ = (2, —2) we have

f(2, 00 =a(1, 1), -1) +f, (1, 1) =3+8=11.

We show in the table that fb(2, 0) isreplaced by the minimum of its

previous value 12 and the new value 11. The optimal decision isaso
updated. We continue in the same manner until the entire state space is
explored. The process only generates reachabl e states.

At the completion of iteration 8, the only remaining stateis (4, 0)
whichisinF. Onemoreiterationisrequired to verify that the termination
condition is met; that is, there are no more states to explore. We now go to
Step 6 and would ordinarily solve the indicated optimization problem to
determine the optimal path value and the final state s on the optimal path.

Thisis not necessary, though, because F is single-valued, implying that s
= (4, 0). The optimal path isidentified by backward recovery with the help
of d*(s), the optimal decision leading into each state s. For the example,
backward recovery begins with the unique terminal state (4, 0). The

optimal path isthe same as the one identified by the forward recursion
procedure given in Table 8.

Reaching vs. Pulling

For the types dynamic programming models that we have addressed, it is
natural to ask which agorithmic approach will provide the best results. To
answer this question, consider again afinite acyclic network whose node set
consists of the integers 1 through n and whose arc set consist of all pairs

(i,)), wherei andj areintegershaving 1L £ i < £ n. Asbefore, arcs point to
higher-numbered nodes. Let arc (i,) have length a;, where—¥ £ a; £E¥.

If (i,]) cannot be traversed it is either omitted from the network or assigned
thelength —¥ or +¥ , depending on the direction of optimization.

For aminimization problem the goal isto find the shortest path from
node 1 to nodej, for j = 2,...,n, while for amaximization problem the goal
isto find the longest path to each nodej. To determine under what
circumstances the reaching method provides an advantage over the pulling
methods in Sections 20.3 and 20.4 for a minimization objective, let fj be the

30

Dynamic Programming Methods

length of the shortest path from node 1 to some nodej. By the numbering
convention, this path has somefinal arc (i, j) such thati <j. Hence, with f;
= O,

f=min{f; +a;:i<j}, j=2..,n (8)

Forward recursion computes the right-hand side of Eq. (8) in ascending j,
and eventually finds the shortest path from node 1 to every other node. The
process is described in the following a gorithm.

Pulling method (forward recursion):
1. Setv1:0andvj =¥ forj=2,...,n.

2.DOforj=2,...,n.
3. DOfori=1,...,j -1

vi = min{vj, v + 3} (9)

To be precise, the expression x = y meansthat x isto assumethe
value now taken by y. Thus (9) replaces the |abel v, by v; + a; whenever

the latter issmaller. A “DO” statement means that the subsequent
instructions in the algorithm are to be executed for the specific sequence of
index values. Step 2 saysthat Step 3 isto be executed n — 1 times, first
with j =2, thenwith j = 3, and so on. At the completion of Step 3 for each

I Wehavefj = Vi

Alternatively, we can solve Eq. (8) by reaching out from anodei to
update the Iabelsvj for alj>i. Again, the algorithm finds the shortest path

from node 1 to every other node as follows.
Reaching method:

1.Setv1:0andvj:¥ forj=2,...,n.

2. DOfori=1,...,n—-1.
3.DOforj=i+1,...,n.

vj - min{vj,vi +qj} (10)

Expressions (9) and (10) are identical, but the DO loops are
interchanged. Reaching executes (10) in ascending i and, for eachi, in
ascendingj. One can show by induction that the effect of i executions of the
nested DO loopsisto set each label v, equd to the length of the shortest

path from node 1 to node k whosefinal arc (I,k) hasl £i. Asa
consequence, reaching stopswith v, = f, for al k.

The above pulling and reaching algorithms require work (number of

computational operations) proportional to n?. For sparse or structured
networks, faster procedures are available (see Denardo 1982).

Reaching 31

When Reaching Runs Faster

Given that (9) and (10) areidentical, and that each is executed exactly once
per arc in the network, we can conclude that reaching and pulling entail the
same calculations. Moreover, when (9) or (10) is executed for arc (i, j),
|label v; is known to equal f; but f; isnot yet known.

The key difference between the two methods isthat i varies on the
outer loop of reaching, but on the inner loop of pulling. We now describe a
simple (and hypothetical) situation in which reaching may run faster.
Suppose it isknown prior to the start of the calculations that the f-values
will be properly computed even if we don’t execute (9) or (10) for al arcs
(i,j) having f; > 10. To exclude these arcs when doing reaching, it is

necessary to add atest to Step 2 that determines whether or not v; exceeds

10. If so, Step 3isomitted. Thistest is performed on the outer loop; it gets
executed roughly n times. To exclude these arcs when doing pulling, we
must add the same test to Step 3 of the algorithm. If v; is greater than 10,

(9) isomitted. Thistest isnecessarily performed on the inner loop which
gets executed roughly n?/2 times. (The exact numbers of these tests are (n
- 1) and (n- 1)n/2, respectively; the latter islarger for al n > 2.)

In the following discussion from Denardo, we present four
optimization problems whose structure accords reaching an advantage. In
each case, this advantage stems from the fact that the known f-value is
associated with anode on the outer loop of the algorithm. Consequently,

the savings is O(n*/2) rather than O(n), as it would be if the known f-value
were associated with a node on the inner [oop.

First, suppose it turns out that no finite-length path exists from node
1 to certain other nodes. One has v = fj =¥ for these nodes. Itisnot

necessary to execute (9) or (10) for any arc (i,) having V= ¥ . If reaching
isused, fewer tests are needed because i varies on the outer loop.

Second, consider a shortest-path problem in which one is solely
interested in f, for aparticular k, and suppose that all arc lengths are

nonnegative. Inthiscase, it isnot necessary to execute (9) or (10) for any
arc (i,]) havingv; 3 v,. Checking for thisis quicker with reaching because
I varies on the outer loop.

Third, consider a shortest-route problem in adirected acyclic
network wheretheinitial node set | = {1}, but where the nodes are not
numbered so that each arc (i,]) satisfiesi <j. To solve the recursion, one
could relabel the nodes and then use the pulling method. The number of
computer operations (arithmetic operations, comparisons, and memory
accesses) needed to relabel the nodes, however, isroughly the same asthe
number of computer operations needed to determine the shortest path tree.
A saving can be obtained by combining relabeling with reaching as follows.
For each nodei, initialize label b(i) by equating it to the number of arcs that
terminate at nodei. Maintain alist L consisting of those nodesi having b(i)
=0. Node 1istheonly beginning node, so L = {1} initially. Remove any
nodei from L. Then, for each arc (i, j) emanating from node i, execute (10),

32

Dynamic Programming Methods

Elimination

subtract 1 from b(j), and then put j onto L if b(j) = 0. Repeat this procedure
until L isempty.

Fourth, consider amodel in which node i describes the state of the
system at timet;. Suppose that each arc (r, s) reflects a control
(proportional to cost) ¢, whichisin effect fromtimet, to timet,, witht, <
t,. Suppose it isknown apriori that a monotone control is optimal (e.g.,
anoptimal path (1,...,h, i, j,...) has g, £ Cij)- Thiswould occur, for
instance, in an inventory model where the optimal stock level is amonotone
function of time. The optimal path from node 1 to an intermediary nodei
has some final arc (h,1). When reaching is used, it is only necessary to
execute (10) for those arcs (i, j) having g, £ ¢; . Thisalows usto prunethe
network during the computations on the basis of structural information
associated with the problem. Thetest is accomplished more quickly with
reaching because i varies on the outer loop.

In the next section, we generalize the hypothetical above situation
and show how reaching can be combined with a bounding procedure to
reduce the size of the network. The main disadvantage of reaching isthat it
can entail more memory accesses than traditional recursion during the
computations. A memory access refers to the transfer of data between the
storage registers of a computer and its main memory.

By Bounds

Our ability to solve dynamic programs is predominantly limited by the size
of the state space and the accompanying need to store excessive amounts of
information. This contrasts sharply with our ability to solve other types of
mathematical programs where the computational effort isthe limiting factor.
One way to reduce the size of the state space isto identify, preferably as
early as possible in the calculations, those states that cannot possibly lie on
an optimal path. By eliminating those states, we a so eliminate the paths
(and hence the states on those paths) emanating from them. We now
describe afathoming test that can be performed at each iteration of aDP
algorithm. The reaching procedureis the best choice for implementation. |If
the test is successful, the state is fathomed and a corresponding reductionin
the state space isrealized.

To begin, consider ageneral DP whose state space can be
represented by an acyclic network where the objective isto determine the
minimum cost path from any initial state to any final state. Let P be the

collection of all feasible pathsand let P* be the optimal path. The problem
can be stated as follows.

z(P") = Minimizep; p z(P)

Now consider an arbitrary states T S and afeasible path P4 that
passes through s. Divide the path into two subpaths: Pé which goes from
aninitia dateto s, and Pg which goes from s to afinal state. The objective
for path P4 is aso divided into two components z(Pé) and z(Pg), where

Reaching 33

zPy = z(PY) + z(P?).

The reaching method starts from an initial state and derives for each
state, inincreasing lexicographic order, the value fi(s). Thisisthe objective

for the optimal path from aninitial stateto s. Thus, if P! isthe set of all
feasible subpaths from any statein| tos

f,(S) =Minimizes1; p1 Z(PY).
S

We can a so define the quantity f(s) as the objective for the optimal

path froms to afinal state. Letting P? be the set of all subpathsfrom's to a
statein F, we have

f6) =Minimizep?; p2 2(P?).

Recal that f(s) is the value obtained by backward recursion; however, in the
reaching procedure this value is not available. Rather we assume the
availability of some computationally inexpensive procedure for obtaining a
lower bound, z, 5(s), on f(s); that is,

z, g(s) £ 1(s).

We also assumethat it is possible to find afeasible path P from

some statein | to some state in F with relatively little computational effort.
It is not necessary for this path to pass through the state s considered above.
Let z; = z(Py) be the objective value for the path. The subscript “B” stands

for “best” to indicate the “best solution found so far”; that is, the incumbent.

The bounding test for state s compares the sum of f,,(s) and z, 5(s)
toz;. If

zz £1,(s) + 7 5(s)
then any path through s can be no better than the solution already available,
Pg, and s can be fathomed. If the above inequality does not hold, s may be
part of apath that is better than P and cannot be fathomed. Thisis called
the bounding elimination test because the lower bound z 4(s) is used in the
test, and z represents an upper bound on the optimum. Theseideas are
illustrated in Fig. 6 which shows two pathsfrom | to F.

Dynamic Programming Methods

Final states, F

Initial states, |

f(S)

X
1
Figure 6. Components of bounding elimination test

The effectiveness of the test depends on the qudity of the bounds z;
and z, (s) and the ease with which they can be computed. The value z5
should be as small as possible, and the value of z, g(s) should be as large as
possible. Thereisaways atradeoff between the quality of the bounds and
the computational effort involved in obtaining them.

To implement the bounding procedures, two new user supplied
subroutines are required. We will call them RELAX and FEASIBLE, and
note that they are problem dependent. RELAX provides the lower bound
Z, g(s), and usually involves solving arelaxed version of the original

problem. The solution to a minimization problem with relaxed constraints,
for example, will always yield the desired resullt.

The purpose of FEASIBLE isto determine afeasible path from s to
adateinF. Call thispathP3. Thefact that PZ isfeasible but not

necessarily optimal means that the objective z(Pé) isan upper bound on
f(s). The combination of the optimal subpath to s which has the objective
f,(s) and the subpath Pé provides us with afeasible path through the state
space with objective value

fi(s) + z(P2).

Thisis an upper bound on the optimal solution z(P") and is a candidate for
the best solution z5. In particular, if

fio(S) + 2(P3) < zg
then let z = f(S) + Z(P2)

and replace the incumbent P with the concatenation of Pg and the optimal
path that yieldsfi(s).

Reaching 35

Any heurigtic that provides a good feasible solution can be used to
obtain the path P2. A common implementation of FEASIBLE often
involves rounding the solution obtained by RELAX. Thisisillustrated in
Example 4 below.

Notethat for state s if
Z(Pg) = ZLB(S)

then Pg must be an optimal path from s to astatein F. The concatenation

of the optimal path to s and the subpath Pé yields an optimal path through

S. Inthiscase, s can aso be fathomed because further exploration of the
state space from state s cannot yield a better solution.

The bounding elimination test is an addition to the reaching
procedure. Recall that this procedure considers each state in increasing
lexicographic order. Thetestsare performed immediately after astates is
selected for the reaching operation but before any decisions from that state
have been considered. The ideaisto eliminate the state, if possible, before
any new states are generated from it. The reaching algorithm is repeated
below for a minimization objective with the bounding modifications added.

Reaching Algorithmwith Elimination Test

Step 1. Start with aset of initial states| and store them aslist in memory.
Cal thelist S. Initializef,(s) foralsT |.Thesevaluesmust be

given in the problem definition. LetsT S bethelexicographicaly
smallest state available. Setz; = ¥.

Step 2. Compute alower bound z g(s) on the optimal subpath from's to a
stateinF.

i 1ff(s)+7 g(s) * zg then fathom state s and go to Step 6.
Otherwise, try to find afeasible path from s to afina statein
F. Call it PZ and compute the objective value z(P3). If a
feasible path cannot be found go to Step 3.

i, 1f f(s) + 2(P2) ® z3goto Step 3.
ii. 1f f(s) + z(Pg) <zgthenputz; - f(s) + z(Pé) and let Pg be
the concatenation of Pg and the optimal pathto s.

iv. If z(P2) = 7, 5(s) then fathom s and go to Step 6; otherwise,
go to Step 3.

Step 3. Find the set of decisions D(s) associated with s. Assume that
there are | feasible decisions and let

D(s) ={dy, do,...,d}}.
Set k =1 and go to Step 4.

36

Dynamic Programming Methods

Step 4. Let the current decision bed = d and find the successor state s’ to
s using the forward transition function:
s' =T(s, d).

If s' isnot feasible go to Step 5; otherwise, search thelist S to
determineif s' has already been generated.

i. Ifnot,putS- SE{s'},d(s')~ d,. and compute the
initial estimate of the optimal path valuefor state s'.

f(s) = fi(s) + (s, d, s')

ii. Ifs'T Sindicating that the state already exists, whenever
fi(s") > fi,(s) + (s, d)
putfb(s') - f(s) + (s, d), d"(s') = dandgoto Step 5.

Step5. Putk- k+1. Ifk>1,putfy(s)- f(s)andgotoStep6 (al

feasible decisions have been considered at s so we can examine the
next state; also the optimal path to s is known). If k £ |, go to Step
4.

Step 6. Find the next lexicographicaly larger state than s on thelist S\ F.
Rename this state s and go to Step 2. If no state can be found go to
Step 7.

Step 7. Stop, the state generation process is complete and the optimal path
has been found from all initial statesin| to all statesin S (note that
S will not in general contain al feasible states because some will
have been fathomed). The optimal pathisPg. Perform backward

recovery to determine the optimal sequence of states and decisions.

At Step 6, atest is needed to determineif the next lexicographically
larger stateisinF. Itisalwayspossibleto test astate s’ whenitis
generated at Step 4 but this would be inefficient because some states are
generated many times. When we arrive at Step 7, the optimal path isthe

incumbent Pg. Therefore, it isnot necessary to examineall s T F and pick
the one associated with the smallest value of f(s) as was the case for the
reaching algorithm without the bounding subroutines.

Lower Bounding Procedure - RELAX

There are two conflicting goals to consider when selecting a procedure to
obtain the lower bound z, 5(s). Thefirstisthat it should be computational

inexpensive because it will be applied to every state. The second isthat it
should provide as large avalue as possible. The larger the lower bound, the
more likely the current state can be fathomed.

There are dso at |east two waysto find alower bound for a
particular problem. First, some constraints on the problem can be relaxed
so that the set of feasible solutionsislarger. Solving the relaxed problem

Reaching 37

will yield an optimal solution with avalue that can be no greater than the
optimum for the original problem. Second, the objective function can be
redesigned so that it lies entirely below the objective of the original problem
for every feasible solution. Then, the optimal solution of the new problem
will have asmaller value than the original.

Employing either of these two approaches, independently or in
combination, resultsin arelaxed problem whose solution is obtained with
what we called the RELAX procedure. There are many waysto form a
relaxed problem; however, ease of solution and bound quality are the
primary criteriaused to guide the selection.

Knapsack Problem

We have aready seen that arelaxation of the one constraint knapsack
problem can be obtained by replacing the integrality requirement X; = Oorl

by therequirement O£ x; £ 1 forj = 1,...,n. Thisisarelaxation because

all the noninteger values of the variables between 0 and 1 have been added
to the feasible region.

A multiple constraint binary knapsack problem is shown below.

n
Maximize S GXj
j=1
n
subjectto SaEb i=1...m (12)
j=1
xj:Oorl j=1,...,n

Again, an obvious relaxation isto replace the 0-1 variables with continuous
variables bounded below by zero and above by one. The resulting problem
isalinear program. The smplex method, say, would be the RELAX
procedure.

A smpler relaxation can be obtained by multiplying each constraint
by an arbitrary positive constant A; (i = 1,...,m) and then summing. This
leads to what is called a surrogate constraint.

SSnapx £ Sib (12)
i=1

j=1i=1

Replacing (11) with (12) resultsin asingle constraint knapsack problem.
Although the single and multiple knapsack problems require the same
amount of computational effort to solve in theory, in practice the former is
much easier. In any case, solving the relaxation as a single constraint
dynamic program or asingle constraint LP will give alower bound z 4(s) at

some state s.

38 Dynamic Programming Methods

Job Sequencing Problem

A relaxation of the sequencing problem with due dates discussed in Section
19.5 can be obtained by redefining the objective function. Consider the
nonsmooth cost function c(j, t) for job j asshownin Fig. 7. Thecost is
zero if the job isfinished before the due date d(j) but riseslinearly at arate
aj) asthe due date is exceeded. A linear function that provides alower
bound to c(j, t) isshown in Fig. 8. Thisfunction intersects the cost axis at
the point —d(j)a(j) and rises at arate &j). For completion timest(j) less than
d(j) the function has negative values indicating a benefit, while it is the same
for times above d(j).

.9 4 .9 A

a()) a()

0 i | 0 T
() t() /(J) t()
—d()a()

Figure 7. ;%?)'L%]Ct' on for sequencing Figure 8. Lower bound cost function

The problem with the new cost function is much easier to solve than
theoriginal. To seethis, let p(j) be the timeto perform job j and denote by
ji thekth job in asequence. The objective function can now be written as

2= § ~dGal) + § G
k=1 k=1

for some sequence (j4, jo. ...,), Where (j,) isthe completion time of job
k-

Thefirst term in the expression for z does not depend on the
sequence chosen, and is constant. Therefore, it can be dropped in the
optimization process. The remaining term is the objective function for the
linear sequencing problem. The optimal solution of this problem can be
found by ranking the jobs in the order of decreasing ratio &j)/p(j) and
scheduling the jobs accordingly. Adding back the constant term provides
the desired lower bound on the optimum.

Reaching 39

Traveling Salesman Problem

Recall that the traveling salesman problem (TSP) is described by apoint to
point travel cost matrix, asillustrated for asix city examplein Table 10 (see
Section 8.6). The salesman must start at a given home base, traverse a
series of arcsthat visitsall other cities exactly once, and then return to the

home base. The optimal tour for this exampleis(1,4) 2 (4,3) =2 (3,5) =
(5,6) = (6,2) > (2,1)} with objective value z;, = 63. The highlighted
cellsin Table 10 are the arcs in this solution.

Table 10. Cost matrix for city pairs
1 2 3 4 5 6

1] — 27 43 16 30 26
21 7 — 16 1 30 25
31 20 13 — 35 5 0
4 21 16 25 — 18 18
5| 12 46 27 48 — S
6| 23 5 S 9 S —

A characteristic of atour isthat one and only cell must appear in
every row and column of the cost matrix. This suggests that the classical
assignment problem (AP), whose solutions have the same characteristic,
can be used as arelaxation for the TSP. For the AP the goal isto assign
each row to one and only one of the columns so that the total cost of the
assignment isminimized. The solution to the assignment problem for the
matrix in Table 10 is{(1,4), (2,1), (3,5), (4,2), (5,6), (6,3)} with
objectivevaue z, , = 54. The corresponding cells are highlighted in Table

11.

Relating this solution to the TSP we see that two separate routes or
subtours can be identified: (1,4) 2> (4,2) 2 (2,1) and (3,5) = (5,6) >
(6,3). But TSP solutions are not allowed to have subtours so the AP
solution is not feasible to the TSP. The restriction that the salesman follow
asingle tour has been dropped. The AP isthus arelaxation of the TSP, and
because it is much easier to solve, it isagood candidate for the RELAX
procedure of dynamic programming.

Table 11. Assignment problem solution
1 2 3 4 5 6

1| — 2/ 43 16 30 26
2 7 — 16 1 30 25
3| 20 13 — 35 5 0
4 (21 16 25 — 18 18
5| 12 46 2/ 48 — 5
6| 23 5 5 9 5 —

An even simpler bounding procedure can be devised by considering
arelaxation of the assignment problem where we select the minimum cost
cell in each row. The corresponding solution may have more than one cell

40

Dynamic Programming Methods

chosen from a column so, in effective, we have dropped the requirement
that one and only cell from each column be selected. For the cost matrix in
Table 10, one of severa solutionsthat yields the same objective valueis
{(1,4), (2,4), (3,6), (4,5), (5,6), (6,3)} with z,,,=45. Thissolution
was found with almost no effort by scanning each row for the minimum
cost cell. The generd relationship between the three objective function
valuesiszg,p £ 25 p £ Zrgp Which was verified by the results: 45 < 54 < 63.

This example shows that there may be many relaxations available for
agiven problem. Thereisusualy atradeoff between the effort required to
obtain a solution and the quality of the bound. By going from the
assignment problem to the relaxed assignment problem, for example, the
bound deteriorated by 16.7%. Because very large assignment problems can
be solved quite quickly, the reduced computational effort associated with
solving the relaxed assignment would not seem to offset the deterioration in
the bound, at least in thisinstance. Nevertheless, the selection of the best
bounding procedure can only be determined by empirical testing.

Example4

Consider the knapsack problem below written with a minimization objective
to be consistent with the foregoing discussion.

Minimize z= —8X,—3X, — 7X3 —5X, —6Xg —9Xg—5X; —3Xg
subject to Xy +Xo +4X3 +4X, +5Xg + OXg+ 8X, +8Xg £ 20

X = Oorl, j=1,...,8

The variables are ordered such that the “bang/buck” ratio is decreasing,
where
_ i Objective coefficient; — 1Gi
bang/buck = ; constraint coefficient; = 13t -

Thisterm derives from the maximization form of the problem where the
“bang” isthe benefit from a project and the “buck” isitscost. Thusthe
bang per buck ratio isthe benefit per unit cost. If the goal isto maximize
benefits subject to a budget constraint on total cost, a greedy approach isto
choose the projects (set the corresponding variables to 1) with the greatest
bang per buck ratio. In our case, such a heuristic first sets x, to 1 and then

inorderx, =1, Xx3=1, X, = L and x5 = 1. At this point the cumulative
benefit is 29 and the cumulative cost (resource usage) is 15. An attempt to
Set X to 1 violates the constraint so we stop with the solutionx = (1, 1, 1,
1, 1,0, 0,0) whichisnot optimal.

Although this greedy heuristic rarely yields the optimum, it is
extremely easy to execute and will form the basis of our FEASIBLE

subroutine for the example. For the RELAX subroutine we solve the
origina problem without the integrality requirements on X- That is, we

Reaching 41

substitute O £ X, £1(=1,...,8) for the 0-1 constraint. What resultsisa
single constraint bounded variable linear program whose solution also
depends on the bang per buck ratios. The following greedy algorithm
yields the LP optimum.

Step 1.Set 2, =0, by =0andj = 1.

Step 2.If j > n, then stop with z, ; = Z.1-

I b1 +a £ b, then

Set Xj:].,

4=%1%G;
bj = bj_1+ a,
and go to Step 3.
If bj_1 +tg > b, then
set X, :(b—bj_l)/ei
REERC T

and stop withz, 5 = Z.

Step 3.Putj - j+ 1landgoto Step 2.

Notethat z 5 isalower bound on the optimum of the original

problem because the integrality requirement on the variables has been
relaxed. The solution will not be feasible, though, when one of the
variablesisfractional. If all variablesturn out to be O or 1, the solutionis
both feasible and optimal to the original problem.

Example5

We consider again the 15 variable binary knapsack problem discussed in
Section 19.3 but with the items renumbered. In Table 12, theitems are
arranged in decreasing order of the benefit/weight ratio to smplify the
determination of bounds. The weight limit is 30 and the objectiveisto
maximize total benefit.

Table 12. Datafor binary knapsack problem

Item 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Benefit| 32 372 33 29.1 346 224 186 236 198 25 115 128 8 95 141
Weght| 16 19 17 15 18 12 10 13 11 14 7 8 5 6 9
Benefit/

Weight

200 19 194 194 192 1.87 1.86 1.82 180 179 164 160 1.60 1.58 1.57

42

Dynamic Programming Methods

The problem was solved three different waysto provide a
comparison of methods: (i) backward recursion with an exhaustively
generated state space, (i) reaching without bounds, and (iii) reaching with
bounds. The bounds procedures were similar to those described in the
previous example. To alow for multiple optimal solutions, we did not
eliminate states whose upper and lower bounds were equal.

The results of the computations are shown in Table 13. The reduced
number of states obtained with reaching without bounds is due to the fact
that states not reachable from the initial state are not generated. When the
bounds procedures are added, a further reduction is achieved due to
fathoming.

Table 13. Comparison of computational procedure

Method Number of states
Exhaustive generation/backward recursion 466
Reaching without bounds 230
Reaching with bounds 68

Sochastic Dynamic Programming 43

20.6 Stochastic Dynamic Programming

Up until now it has been assumed that a decision taken from a given state leads to a known
result represented by a subsequent state in the network. In many situations, thisis not the
case. Before the decision is made, outcomes may not be known with certainty athough it
may be possible to describe them in probabilistic terms. For example, travel timeon a
network arc may vary with the traffic, maintenance costs for a machine may be depend on
usage, or investment returns may be tied to the general health of the economy. In each
such instance, the most that we may able to say about a particular outcome isthat it occurs
with aknown probability, thus permitting us to specify a probability distribution over the
set of trangitions at agiven state. For the decision maker, this can be the most challenging
and frustrating aspect of the problem. Fortunately, the dynamic programming procedures
previously described can be modified in a straightforward manner to handle this type of
uncertainty giving rise to the field of stochastic dynamic programming.

Development

We continue to work with afinite, acyclic state space. Given astates and a
decisiond T D(s), wewill assume that the transition to anew state s' is not
known apriori but is governed by a specified probability distribution. Let
P(s':s, d) be the mass density function that describes the probability of a
transition to the state s' given the decision d ismade at state s. For all
possible outcomes s', it isrequired that
a P(s':s,d) =1
sTs
and P(s:s,d)=0ifs'| S.

We redefine several quantities formerly used for the deterministic case.

z(s, d, s') = cost of gtarting in state s, making decisiond and moving
to state s'

f(s) = minimum expected cost of arriving at afinal state given
the path startsin state s

d’(s) = decision for state s that resultsin the minimum expected
cost

Given these definitions we obtain the expected path objective for
states and decision d.

r(s,d)= § P(s":s,d)(z(s,d,s") + f(s")) (13)
sTs
The recursive equation that defines the function f(s) is as follows.
f(s) = Minimize{r(s,d) : d T D(s)}

This equation can be solved using a slight variation of the procedure
developed for backward recursion. The solution that is obtained, though, is

Dynamic Programming Methods

no longer an aternating series of states and decision. The randomnessin
the problem prevents us from knowing which state the system will bein
from one transition to the next. In fact, a solution correspondsto a
conditional strategy that indicates what the best course of action is should
we find ourselvesin aparticular state. Given that we arein state x, for
example, the optimal strategy might say to take actiony. In most cases, the
uncertainty of transition makesit difficult to limit the state space in the
forward generation process. Thusit is often necessary to generate the
complete state space and associate a decision with each element.

Note that the use of the expected value criterion (13) in the objective
function is based on the implicit assumption that the decision maker isrisk
neutral. Thiswould be the case for alarge organization like a government
agency, or when the same (or similar) problem had to be solved repeatedly.
If these conditions aren’t present, it would be best to use a different
objective, such as minimizing the maximum possible loss or maximizing
expected utility. The former isan extremely conservative strategy because it
ignores the probability of loss and only tries to minimize the worst possible
outcome. The latter requires that the decision maker specify hisor her
attitude toward risk in the form of a utility function. Someonewho is
optimistic or willing to take risks would have a convex utility function. For
this person, unit increases in gains provide increasingly greater rewards.
Someone who is conservative or wishes to avoid risk would have a concave
utility function where unit increases in gains provide decreasingly fewer
rewards. A decision maker who isrisk neutral would have alinear utility
function.

Stochastic Equipment Replacement

To illustrate how dynamic programming can be applied to situations where
outcomes are uncertain, consider a problem where a machine of acertain
typeisrequired for n years. Different machines are available with different
life expectancies. Thelife expectancy isnot afixed number but rather a
random variable defined over severa years with accompanying
probabilities. The datafor three options are givenin Table 14. Machine 1,
for example, costs $100 and will last anywhere from one to three years with
probabilitiesp; = 0.3, p, = 0.5 and p; = 0.2, respectively. For simplicity,
we do not consider the time value of money but it should be borne in mind
that spending $100 today is not the same as spending $100 five years from
now.

Table 14. Datafor machine replacement example

Machine 1 Machine 2 Machine 3
Cost ($) 100 200 300
Life expectancy (yr) 1 2 3 2 3 4 5 4 5 6 7
Probability 03 05 02 01 03 04 02| 01 02 04 03

A machineisreplaced at the end of itslife with one of the three
options. At time n the existing machine isdiscarded. No salvagevalueis

Sochastic Dynamic Programming 45

assumed. The goal isto determine an optimal strategy over the n-year
period. We will solve the problem for n = 10.

The DP model isoutlined in Table 15 where it can be seen that the
state vector s has a single component corresponding to the number of years
that have transpired since time 0. The state space S ranges from O to 16.
Although the problem ends once the state s = 10 is reached, it might be that
at the end of year 9 we buy machine 3 and it lasts 7 years. Thiswould put
us at the end of year 16, hence the need for states 11 — 16 in the definition
of S. To account for the uncertainty in the problem, we introduce a random
variable, cal it x, corresponding to life expectancy of amachine. For each
of the three options, x follows the appropriate distribution given in Table
14. If wearein state 3 and purchase machine 2, for example, thereisa 0.4
chance (p, = 0.4 for machine 2) that we will wind up in state 7. In general,

S = s+ x which defines the transition function. Thuss' is aso arandom

variable.

Table 15. DP model for the stochastic equipment replacement problem

Component Description

State S = (s), where sisthe years since the start of the problem.

Initial state set | ={(0)}; the process begins at time 0.

Final state set F ={(10,...,16)}; the process ends at the end of year 10. We
add states 11 through 16 to take care of the possibility that an
option lasts beyond the planning horizon.

State space S={0,1, 2,...,16}; the state space has 17 elements.

Decision d(s) = (d), the machine option to be installed at time s.

Feasible decision

Transition function

Decision objective

Fina value function

Recursive equation

D(s) ={1, 2, 3} fors<10
= A fors3 10

s =T(s, d)ors =s+ x, where

x isthe life of the option, arandom variable whose probability
distribution depends on d as given in Table 12.

z(s, d, s') = c(d), the cost of decisiond asgivenin Table 12.
f(s)=0 forsi F
Boundary conditions; no salvage value is assumed.

f(s) = Minimize{ E[c(d) + f(s)] : dT D(s)},

where E[c(d) + f(s')] = r(s, d) = é P(s:d)(c(d) + f(s'"))
sis

46 Dynamic Programming Methods

The computations for the example are carried out in Table 16. The
columnsfor s and f(s") are not included because the transitions are
governed by a probability distribution and therefore uncertain. The values
of r(s, d) are determine through an expected value computation and, as
indicated by Eq. (13), are the sum of products.

Table 16. Backward recursion for equipment replacement problem

1) 2) (4) 5) (6) (7)
Index S d z rs,d) f(s) d’(s)
1 10- 16 — — — 0 —
2 9 1 100 100 100 1
3 8 1 100 130 130
2 200 200
4 7 1 100 189 189 1
2 200 210
3 300 300
5 6 1 100 2417 2417 1
2 200 243
3 300 300
6 5 1 100 293 293 1
2 200 297.9
3 300 310
7 4 1 100 3466 333 3
2 200 352.9
3 300 333
8 3 1 100 3947 3849 3
2 200 403.4
3 300 384.9
9 2 1 100 4406 4406 1
2 200 455.7
3 300 444,
10 1 1 100 4912 491.2 1
2 200 503.9
3 300 492.2
11 0 1 100 5446 5446 1
2 200 551.3
3 300 545.3

After setting f(s) = O for al s in F, the backward recursion begins at
the end of year 9 (beginning of year 10) withs=9. Although any of the
three machines can be purchased at this point, the decision d = 1 dominates

Sochastic Dynamic Programming 47

the other two options because all lead to astate in F and Machine 1isthe
least expensive; that is, ¢(1) = $100 < ¢(2) = $200 < ¢(3) = $300.
Therefore, we only included = 1in Table 16.

Moving to s = 8, we can either purchase Machine 1 or Machine 2
(the third option is dominated by the second so is not considered). The
computations are as follows:

d=1:

r(8, 1) =py(c(2) +1(9)) + po(c(2) +£(10)) + p5(c(2) + f(11))
=0.3(100 + 100) + 0.5(100 + 0) + 0.2(100 + 0)
=130

d=2
r(8, 2) = py(c(2) +f(10)) + p3(c(2) + f(11)) + p,(c(2) +f(12))
+ps(c(2) +f(13))
=0.1(200 + 0) + 0.3(200 + 0) + 0.4(200 + 0)
+0.2(200 + 0)
=200
Therecursive equation is

11(8,1) = 130y

f(8) = Minimize%'r(&z) _ 200% = 130.

These results are shown in columns (5) and (6) of Table 16. The optimal
decision given that we arein state s = 8 isto buy Machine 1. Therefore,

d*(8) = 1 asindicated in column (7).

Working backwards, it is necessary to consider all three options for
statess =7 through s = 0. The computations for the soleinitial states=0
are given below.

d=1:

r(0, 1) =pq(c(2) +f(2)) + po(c(2) +f(2)) + p3(c(2) +(3))
=0.3(100 + 491.2) + 0.5(100 + 440.6) + 0.2(100 + 384.9)
=544.6

d=2
r(0, 2) =p,(c(2) +1(2)) + p3(c(2) +f(3)) + p4(c(2) +f(4))
+pg(c(2) +1(9))
=0.1(200 + 440.6) + 0.3(200 + 384.9) + 0.4(200 + 333)
+0.2(200 + 293)
=551.3
d=3:

r(0, 3) = py(c(3) +1(4)) + ps(c(3) + f(5)) + pg(c(3) + f(6))

48

Dynamic Programming Methods

+po(c(3) + (7))

= 0.1(300 + 333) + 0.3(300 + 293) + 0.4(300 + 241.7)
+0.2(300 + 189)

=545.3

Therecursive equation is

11(0,1) =544.6]
f(8) = Minimize | 1(0,2) =551.3y = 544.6.
1r(0,3) =545.3

The optimal policy isto buy Machine 1 at theinitial state (d”(0) = 1) and at
every state except s = 3 or 4 when it is optimal to buy Machine 3 (d”(3) =

d’ (4) = 3). Once again we point out that no optimal path through the state
space can be identified because the transition at each state is uncertain.

A more redistic example would include an age-dependent salvage
value for each machine still functioning when it entersafina statein F. One
way to incorporate this feature in the model is to redefine the decision
objective z(s, d, s') in Table 15 to reflect salvage values. For any decisiond
and state s that leadsto astate s' inF, z(s, d, s') would no longer be c(d)
but, say c(s' —s, d), where s' —sisthe age of the machine when it enters state
s'. However, because the problem ends when we enter state 10, the cost
should really be afunction of 10 —srather thans' —s. For example, if
Machine 1 has a salvage value of $40 after one year of use, $20 after two
years of use and $0 after three years of use, z(9,1,10) = 100 — 40 = 60,
2(9,1,11) = 2(9,1,12) = 60, while z(8,1,10) = 100 — 20 = 80, z(8,1,11) =
80, and z(7,1,10) = 100 — 0 = 100.

Other cost functions are possible but it would not be correct to
simply assign atermina value corresponding to a salvage valueto f(s) for s

T F unlessf(s) where machine- and age-independent. Finally, if it were
assumed that a machine had a salvage value at every state it would be
necessary to redefine z(s, d, s') accordingly for all s and s'.

Exercises 49

20.7 Exercises

1.

For the rectangular arrangement of Fig. 1, what state variable definitions are accept-
able?

For the binary knapsack problem with two resource constraints, give a state variable
definition that is acceptable and one that is unacceptable according to the requirements
stated in Section 20.1.

Consider the general sequencing problem presented in Section 19.6 and letn = 4. We
want to add the condition that job 3 must precede job 2 in the sequence. Incorporate
this congtraint in the definition of D(s) and use forward generation to find the set of all
reachable states. Theinitial stateis (0, 0, 0, 0).

An integer knapsack problem is given below. The values of the decisions are
unbounded from above.

Maximize z= 6Xxq + 8X, + 11X3
subject to 3Xq +5X, +7x5 £10
X; 3 Oandinteger,j=1,2,3
Consider the dynamic programming model based on the line partitioning problem
discussed in Section 19.4.

a. Write out the state space obtained with exhaustive generation.
b. Write out the state space obtained with forward generation.

Consider the knapsack problem in Exercise 4 but restrict the variables to be either O or
1. Consider the dynamic programming model based on the resource allocation problem
presented in Section 19.3.

a. Write out the state space obtained with exhaustive generation.
b. Write out the state space obtained with forward generation.

Use backward recursion for Exercises 6 - 10. Show the table format introduced in Section
20.3 with all the states. Recover the optimal path and identify the accompanying states and
decisions. Perform the calculations manually and verify with the Teach DP add-in.

6. Solvethe path problemin Fig.1 with arectangular arrangement of states; let s, be the

X,-coordinate and s, be thex,-coordinate. Use the arc lengths shownin Fig. 3.

7. Solvethereliability problem given as Exercise 29 in the DP Models chapter. Limit the

state space to the following.
S={(1,0), (2 0), (2, 100), (2, 200), (3, 0), (3, 50), (3, 100), (3, 150), (3, 200),

(3, 250), (3, 300), (4, 0), (4, 40), (4, 80), (4, 50), (4, 90), (4, 100), (4, 130),
(4, 140), (4, 150), (4, 180), (4, 190), (4, 200), (4, 230), (4, 240), (4, 250), (4,

50

Dynamic Programming Methods

10.

11.

12.

13.

14.

15.

280), (4, 290), (4, 300), (5, 0), (5, 40), (5, 80), (5, 50), (5, 90), (5, 100), (5,
130), (5, 140), (5, 150), (5, 180), (5, 190), (5, 200), (5, 230), (5, 240), (5,
250), (5, 280), (5, 290), (5, 300)}

Solve the line partitioning problem given as Example 4 in the DP Models chapter.
Solve the integer knapsack problem given as Exercise 10 in the DP Models chapter.
Solve the 4-job sequencing problem given as Example 10 in the DP Models chapter.

Find a state variable definition for the path problem with turn penalties that allows both
forward and backward transition functions. Use your agorithm to solve the rotated
path problem in Fig. 3 with aturn penalty of 10 for up turns and a penalty of 5 for
down turns.

Find the backward decision set and backward transition function for the binary knap-
sack problem with one or more constraints.

Find the backward decision set and backward transition function for the unbounded
integer knapsack problem with one constraint. Use only one state variable.

Consider the following optimization problem.

n-1
Maximize J= & Gi(Xj, Xjs1)

i=1

subject to

Qo5
X
I
o

i=1

x; ® Oandinteger,i =1,...,n

Give a dynamic programming formulation based on backward recursion. Be sure to
indicate the optimal value function, the boundary conditions, and what the solution
would be when the algorithm is executed.

Use backward recursion to solve the following problem manually. Draw the
associated decision network. Verify your answer by solving the same problem with
the Teach DP add-in.

Maximize z= 3Xq + 5X, +4X3 + 6X, + 6X; + Xg
subjectto 2xq +3Xy +4Xg + 77X, +8X: + Xg£ 15
Xj =0orl, j=1,..,6

Exercises 51

16.

17.

18.

19.

20.

Solve the problem below by hand using forward recursion.
Minimize z= 7x; +4X, + 6X3 + X4 + 3Xg + 2Xg + 5X7
subject to 2Xq +Xo +5Xg +4X, +2Xg + 5Xg + 3%, 3 13

Xq +3Xy +2X3 +6X4 +Xg +4Xg +5X; 3 15
Xj =0orl, j=1,..,7

Solve the problem below by hand with the reaching procedure.
Minimize z= 8xq + 3X, + 7X3 + 5X, + 6Xg + 9Xg + 5X; + 3Xg
subject to Xy *Xo +4X3 +4X, +5X5 + 9Xg +8X, +8Xg 2 20
Xj =0orl,j=1,..8
Solve the following integer knapsack problem using the reaching method with bound

elimination. Compute upper bounds by solving the LP relaxation. Develop your own
procedure for finding lower bounds (feasible solutions).

Maximize z= 5X; +2X, + 8X3 +5X4 + 6X, + 7Xg
subject to 2X1 *+Xo +5Xg +3X, +4X, +4Xg £23
Xj ® Oandinteger, j=1,...,6

Solve the job sequencing problem below using the reaching method in conjunction
with the bounding elimination test described in the text.

Job Processing time Duedate Cost per day
j p() d@) aj)
1 6 11 $70
2 10 13 50
3 7 15 80
3 5 9 30
4 12 20 60

(Project Scheduling — Longest Path Problem) A project, such as building a house or
making afilm, can be described by a set of activities, their duration, and alist of
precedent relations that indicate which activities must be completed before others can
start. For example, the frame of a house cannot be erected until the foundation is
laid. The problem of determining the length of a project can be represented by a
directed acyclic network, where the goal isto find the longest path (critical path) from
anominal start node 1 to anominal finish node n.

In an activity-on-the-node (AON) network model, the nodes correspond to
project activities while the arcs indicate precedence relations. One start node and one

52

Dynamic Programming Methods

finish node are introduced to tie the other nodes together. A single arc isintroduced
between the start node and each node associated with an activity that has no
predecessors. Similarly, asingle arc isintroduced between each node associated
with an activity that has no successors and the finish node.

Consider the set of activitiesin the following table for the development of a
consumer product. The project begins by estimating the potential demand and ends
after market testing.

Immediate Duration
Activity Description predecessors (weeks)

A Investigate demand — 3
Develop pricing strategy —
Design product —
Conduct promotional cost analysis
Manufacture prototype models

Perform product cost analysis

Perform final pricing analysis B,
Conduct market test

,F

I OmmmoOw
®@omo >
© N PR OB O R

a. Draw the AON network for this project. Number the nodes such that if arc (i,)
exists, i <j.
b. Develop aforward recursion agorithm for finding the longest path from node 1 to

nodej, forj =2,...,n. Let ES, betheearliest time activity k can start, where ES;
=0, and let L, beitsduration. The recursion should be based on ES,.

c. Develop abackward recursion agorithm for finding the longest path from node |
tonoden, for j=n-1,...,1. Let LF, bethelatest timeactivity k can finish, where

LF,=ES,. Therecursion should be based on LF,.

c. Apply your forward and backward algorithms to the AON network developed in
part a

d. Thefreedack of an activity isthetimethat it can be delayed without delaying

either the start of any succeeding activity or the end of the project. Total dack is
the time that the compl etion of an activity can be delayed without delaying the end
of the project. A delay of an activity that hastotal slack but no free slack reduces
the dack of other activitiesin the project. Activities with no dack are called critical
and fall on the longest path.

Write out genera expressions that can be used to find the free slack (FS,)
and total slack (TS,) of an activity k. Note that it might be convenient to introduce
the early finish time of activity k, EF, aswell asitslate start time, LS. Determine
FS, and TS, for all k in the project.

Exercises 53

21.

22.

23.

24,

e. Develop alinear programming model that can be used to find the longest path in an
AON network. Let the decision variable be t= the earliest time activity j can start.

Using forward recursion, solve the 2-dimensional integer knapsack problem for the
data given in the table below. Assume abudget of $13 and aweight capacity of 20 Ib.

[tem 1 2 3
Cost, $ 1.0 2.5 3.0
Benefit, $ 6.0 8.0 11.0
Weight, Ib. 3.0 5.0 7.0

(Path Problemwith Uncertainty) Consider the path problem shownin Fig. 3. You
have just discovered that the steering mechanism in your car is malfunctioning so it
will not always travel in the direction that you want it to. When you decide to go up,
you will actually go up with a 0.9 probability and go down with a0.1 probability. If
you decide to go down, you will actually go up with a 0.4 probability and down with
a 0.6 probability. These rulesdo not hold where only one direction of travel is
possible (i.e., nodes 4 and 6). At those nodestravel inthe feasible directionis
assured. Inthisrisky situation, you decide to make decisions that will minimize your
expected travel time. Formulate and solve the dynamic programming model for this
problem.

Nickoli Putin is considering a game for which his probability of winning is 0.6 and
his probability of losing is0.4. He has $50 and decidesto play twice. At each play,
the bet will be either $10 or the whole amount currently held. 1f he wins, the amount
bet will be added to histotal. If he loses, the amount bet will be deleted from histotal.
Thus, in thefirst play the bet can be either $10 or $50. If the bet is $10, Nickoli can
end the play with either $40 or $60 depending on whether he wins or loses. If the bet
is $50, the results may be either 0 or $100. After thefirst play, he will bet again using
the samerules. After the second play, he will go home with the amount remaining.

Use dynamic programming to determine the strategy that will maximize Mr.
Putin’s expected holdings after two plays. Reduce the number of states by
considering only those states that can be reached during the play of the game.

The figure below shows a decision network where the numbersin parentheses
adjacent to the nodes represent states and the numbers along the arcs represent the
costs of decisions. The state vector has three components, s = (s;, S,, S3), and the

decision vector has asingle component that takeson thevalues 1, 2 or 3. The
objective is to minimize the cost of going from (0, 0, 0) to (1, 1, 1).

54 Dynamic Programming Methods

(0, 1, 1)

©, 1, O)Q/Q

(1,1, 1)
(110)/(§>
9 5

(L/ (0,0, 1) b/ (1,0,1)

(0, 0, 0)

(1,0, 0)

a. Writethe general forward transition equation which would define the transitions

shown in the figure.

b. Write agenera expression that defines the feasible decisions at each state.

Solve the problem with backward recursion.

d. Writethe general backward transition equation which would define the transitions

shown in the figure.

e. Solvethe problem with forward recursion.
f. Solve the problem with the reaching procedure.

25. Consider the model for the path problem with turn penalties described in Section 19.5.
A specific network with n = 3 is shown below. The values of &(s, d) are given along

thearcs. The pendtiesarer, = 10 for aleft turn and , = 5 for aright turn.

X2
A : (15) % (14)
3
(15) (12)
5
>]k 9) - ©)
(10) A(10)
1 (13) (16)
+ O—=0O—=0O
|
|

a. For theinitia state (1, 1, 0), show the path P and evauate z(P) for the sequence
of decisions 1, 0, 1, 0. Use vector notation to describe P.

b. Solve the problem with backward recursion using the tabular format suggested in

the text for the computations.

Exercises 55

c. Assumethe optimal policy function d”(s) is given in the table below. Usethe
forward recovery procedure to find the optimal path starting at the initial state
(1,1,1).

State | (1,1,0) (1,1,1) (1,2,00 (1,3,00 (2,1,1) (2,200 (2,2 1)
d’(s) 0 1 1 1 0 1 0

State | (2,3,00 (2,3,1) (31,1 (3,20 (321 (330 (331
d*(s) 1 1 0 0 0 — —

26. The tables below show the transition and decision objective functions for adynamic
programming model. A dash indicates that the transition is not allowed. The states
are listed in lexicographic order (A, B, C, D, E, F, G, H). StatesA and H arethe
initial and final states, respectively. The recursive equation is

f(s) = Minimize{ z(s, d) + f(s') : dT D(s), s' =T (s, d)}

and the boundary condition isf(H) = 0.

Use backward recursion to find the optimal value of f(A) and the corresponding
path through the state space.

Transition function, T(s, d)

S A B C D E F G H
d=1| B F F E F H H —
d=2| C C E G H G —_ —
d=3| D —_ - = G —_ - =

Decision objective, z(s, d)

s| A B C D E F G H
d=1| 2 30 21 8 8 11 15 —
d=2| 8 5 12 15 21 3 —_ -
d=3| 12 —_ = = 6 —_ = =

27. You havearoll of paper 15 ft. long. The datain the table below shows your orders
for paper in different sizes. Y ou want to cut theroll to maximize profit. Model this
problem as a dynamic program and solve.

56 Dynamic Programming Methods
Order (no. of ralls) Length (ft) Profit ($ per roll)
1 10 5
2 7 4
1 6 3
3 4 2.5
28. Solve the following integer, nonlinear program using backward recursion. Give al

29.

aternate optima.

Maximizez= 5x; +(x2)2 +(x3)3
subject to X X, +(x3)2 £6
ij {0,1,2,3},j=1,2,3

Using the tabularized computational results, find the new solution when the right-hand
side of the constraint is changed to 5.

(Deterministic Dynamic Inventory - Production Problem) A firm wishes to establish a
production schedule for an item during the next n periods. Assume that demand d (t

= 1,...,n) isknown and that the manufacturing timeis negligible. This meansthat
production in period t can be used to fill the demand in that period. If moreitemsare
produced than needed, the excessis held in inventory at acost. Thegoal isto devisea
schedule that minimizes the total production and inventory holding costs subject to the
requirement that all demand is satisfied on time and that the inventory at the end of
period nis at some predetermined level. To formulate the model, define the following
policy variables.

X; = production quantity in period t
iy = inventory at the end of periodt

such that x, and i; are nonnegative integers. Now let ¢(x;, i) = G(x;) + hy(i;) bethe
cost functions for each period t, where

G(x) 2 0, ¢(0)=0, h(i)2*0, h(0)=0.
Finally, the inventory balance equations are
ip =i+ X —d fort=1,...,n

whereit is assumed that i, = 0 and that each demand d, is a nonnegative integer.

For a 4-period planning horizon (n = 4), the production cost functions are
givenin thetable below. For example, the total cost whenx; =12is86(=10" 5+
6" 5+ 3" 2). Notethat the datain the table imply that the production cost functions
are concave; they exhibit economies of scale. Assume the holding cost functions are
h(iy) = hyi;, where h; = 1, h, = 2, and hy = 1. Let the demand requirements be

Exercises 57

30.

dy =10, dy=3, dy=17, d, = 23.

a. Develop adynamic programming model for this problem and then useit to find an
optimal production schedule. Be sureto indicate total production x, and ending

inventory i, in each period t.

b. Indicate the impact of requiring an additional unitin period 1 (that is, let d; = 11).
Also, consider separately, an additional unit in period 2; in period 3; in period 4.

c. Find an optimal schedule whereall h, = 0. Alsowhereall h, = 5.

Unit production cost

No. of items, k | Period1 Period2 Period3 Period4
1£KES 10 8 12 9
6E£KE 10 6 5 7 8
11£k £15 3 3 6 4
16 £ k 1 2 1 4

d. Find an optimal production schedule where the demand requirements are revised
suchthatd, =3 andd, = 10. Also, whend; =23 andd, =17, and when d, = 17

and d; = 3. (Solve each case separately)

e. Find an optimal production schedule for the original data when the holding cost
function ishy(i) =+fi; for every Periodt.

(Inventory with Backlogging) Consider the datain the previous exercise and assume
that backlogging is permitted; i.e., shortagesin period t can befilled by production in
some future period. Let theinventory holding and backlog penalty cost function be

}ohio ifi 30
h(,) =1 for every period t.
(i f—pi, ifi, £0 P

(All demand must be met by the end of the horizon.) In each part below, find an
optimal production schedule using dynamic programming and indicate ending
inventory or backlog in each period.

a h=p=0.
b. hy=p =1

c. Suppose theinventory holding and backlog penalty cost functionis hy(i;) = \/||_t|
for every period t.

58 Dynamic Programming Methods

31. Thefollowing information is available for a stochastic dynamic program.
I. s=(s;,s),wherelf£s £3and1£s,£3
i. I ={@D}andF={(3,5):1£s,£3}
iii. d=(d), whereforsi S, D(s)={0, 1}
iv. Theforward transition function for the first state variableiss; = s; + 1.

v. Thetransitions with respect to the second state variable are uncertain and are
governed by the probabilities given in the following tables. These probabilities
are independent of the value of s,.

Transition probabilities, P(s, : s,, d)

Fors,=1 Fors,=2 Fors, =3
S 1 2 3 1 2 3 1 2 3
d=0 01 03 06 03 05 02 05 05 00
d=1 05 02 03 02 04 06 00 03 07

The only costsinvolved in the problem are those associated with the final states. The
values of f(s) for s T F aref(3,1) = 30, f(3,2) = 20 and (3,3) = 10. There are no
costs associated with the decisions. Use backward recursion to minimize the expected
cost of going from the initial state (1, 1) to afinal states1 F.

32. Consider the stochastic dynamic programming model of afinite inventory problem
givenin the table below.

Component Description

State s =(sy, Sy), Where

s, = current period

s, = inventory level at the beginning of the current period

Initial state set I ={(1,s):s,=0,1,2,3}

Final state set F={(T+1,s):s,=0,1,2,3}, where T is the time horizon.
State space S={(s;,s):5=1,...,T+1,5,= 0,1,2,3}

Decision d = (d), where d isthe amount of product to order (restricted to

integer values).

Exercises 59

Feasibledecisionset | D(s)={0,1,2,3:s =T(s,d)1 S}, suchthat

d must be chosen so that there is a zero probability that the inven-
tory level exceeds 3 or falls below 0.

Trangition function | s" = T(s, d), where

s;=s5;+1

S, =5,—8(sy) +d
Here, 5(s,) isthe demand in period s; and follows the probability
distribution given in the next table.

}5 + d+ 2(sy)? ford> 0
Decision objective z(s,d,s) =1

§2(s,)? ford=0

z o RS

Path objective Minimize zP)=E§ @ s, d, s)
6l s,di D(s) a

Fina valuefunction |[f(s)=0 forsT F

Recursive equation | f(s) = Minimize E[{ a(s, d) + f(s’) : dT D(s)}]

Probability distribution for demand in period 1

8y 0 1 2
P(5,) 0.4 0.4 0.2

Assume that we have aready computed the optimal value functions
f(2, 0) = 100, f(2, 1) =30, f(2, 2) = 40, f(2, 3) = 50.

Now find the optimal policy for period 1 when the inventory level at the beginning of
the period is 2.

33. Solve the soot collection problem (Exercise 28 in the DP Models chapter) with
forward recursion. Provide the recursive equation.

34. The matrix below shows the travel cost between city pairsfor atraveling salesman
(Section 19.6 of the DP Models chapter).

60 Dynamic Programming Methods

a. Suggest a heurigtic that could be used to find an upper bound on the optimal
solution.

Cost matrix for city pairs
1 2 3 4 5 6

1| — 32 30 27 25 40
2 9 — 16 10 30 25
3| 15 16 — 21 41 14
4 31 7 24 — 18 21
5| 22 31 7 41 — 9

6| 14 12 16 15 22 —

b. Solve the corresponding assignment problem to find alower bound on the cost of
the optimal tour.

c. Solvethe TSP by hand using areaching algorithm with bounds.

Bibliography 61

Bibliography

Bard, JF, “Assembly Line Balancing with Parallel Workstations and Dead Time,”
International Journal of Production Research, Vol. 27, No. 6, pp. 1005-1018, 1989

Bard, J.F., K. Venkatraman and T.A. Feo, “ Single Machine Scheduling with Flow Time
and Earliness Penalties,” Journal of Global Optimization, Vol. 3, pp. 289-309, 1993.

Bellman, R.E., Dynamic Programming, Princeton University Press, Princeton, NJ, 1957.

Bellman, R.E. and S.E. Dreyfus, Applied Dynamic Programming, Princeton University
Press, Princeton, NJ, 1962.

Denardo, E.V., Dynamic Programming: Models and Applications, Prentice Hall,
Engelwood Cliffs, NJ, 1982.

Denardo, E.V. and B.L. Fox, “Shortest Route Methods, 1. Reaching, Pruning and
Buckets,” Operations Research, Vol. 27, pp. 161-186, 1979.

Dijkstra, E.W., “A Note on Two Problems in Connexion with Graphs,” Numerische
Mathematik, Vol. 1, pp. 269-271, 1959.

Dreyfus, S.E. and A.M. Law, The Art and Theory of Dynamic Programming, Academic
Press, New York, 1977.

Kaufmann, A., Graphs, Dynamic Programming and Finite Games, Academic Press, New
York, 1967.

Schrage, L. and K.R. Baker, “Dynamic Programming Solution of Sequencing Problems
with Precedence Constraints,” Operations Research, Vol. 26, No. 3, pp. 444-449, 1973.

Wagner, H. and T. Whitin, “Dynamic Version of the Economic Lot Size Moddl,”
Management Science, Vol. 5, pp. 89-96, 1958.

Yen, J.Y ., “Finding the Lengths of All Shortest Paths in N-Node Nonnegative Distance

.1 . .
Complete Networks Using N3 Additions and N3 Comparisons,” Journal of the
Association of Computing Machinery, Vol. 19, pp. 423-424, 1972.

