
Chapter 20 Page 1

6/3/02

Dynamic Programming Methods

Although all dynamic programming (DP) problems have a similar structure, the
computational procedures used to find solutions are often quite different. Unlike linear and
integer programming where standard conventions are used to describe parameters and
coefficients, there is no common data structure that unifies all DPs. Models are problem
specific, and for the most part, are represented by recursive formulas rather than algebraic
expressions. For this reason it is difficult to create a general computer code that will solve
all problems. It is usually necessary to write one's own code to solve a specific
application. This is one of the reasons why dynamic programming is much less popular
than, say linear programming, where models can be created independently of the software
leaving the coding of algorithms to the professionals1.

Dynamic programming is, however, much more general than linear programming
with respect to the class of problems it can handle. As the examples in the previous chapter
suggest, there is no difficulty with the integer restrictions on the decision variables, and
there is no requirement that any of the functions be linear or even continuous. There is also
never any question of local optima; for a correctly formulated problem, a dynamic
programming algorithm will always report a global optimum when it terminates.

There is some ambiguity as to the origins of DP but the ideas date back at least to
the work of Massé in the mid-1940s. Massé was a French engineer who developed and
applied a fairly analytical version of DP to hydropower generation. The standard literature,
though, credits Richard Bellman with developing the theoretical foundations of the field
and proposing the first algorithms. His early research, published in the 1950s, was aimed
at solving problems that arise in the control of continuous systems such as aircraft in flight
and electronic circuits. Most traditional expositions follow Bellman’s original ideas and
describe what is called backward recursion on the exhaustive state space. This is perhaps
the broadest of the solution methodologies but the least efficient in many instances. We
begin with a full description of backward recursion and then move on to forward recursion
and reaching. We close the chapter with a limited discussion of stochastic models in which
the decision outcomes are viewed as random events governed by known probability
distributions.

1 The methods of this chapter are implemented in the Teach DP Excel add-in which is quite general with
respect to the class of problems it can solve.

20.1 Components of Solution Algorithms
The central requirement of a dynamic programming model is that the optimal sequence of
decisions from any given state be independent of the sequence that leads up to that state.
All computational procedures are based on this requirement known as the principle of
optimality so the model must be formulated accordingly. If we consider the single machine
scheduling problem with due dates discussed in Section 19.6 of the DP Models chapter, we
see that the optimal decision at a particular state does not depend on the order of the

2 Dynamic Programming Methods

scheduled jobs but only on their processing times. To calculate the objective function
component c(d, t) given in Table 22 of that chapter, we need to first calculate

t = Πn
j=1 sjp(j)) + p(d)

for any decision d ∈ D(s). This calculation is not sequence-dependent so the principle
applies.

Now consider an extension of this problem involving a changeover cost o(i, j) that
is incurred when the machine switches from job i to job j. The new objective function
component is c(d, t) + o(i, d), where i is the last job in the optimal sequence associated with
the current state. This modification invalidates the DP formulation in Table 22 because the
current and future decisions depend on the sequence of past decisions. However, if we
alter the definition of a state to include an additional component corresponding to the last
job in the current sequence, we obtain a valid model similar to the one for the traveling
salesman problem in Table 23. The new state variable ranges from 1 to n so the price of the
modification is an order n increase in the size of the state space.

The general model structure given in Table 4 in Section 19.2 implies that many
optimization problems can be formulated as dynamic programs. In this section, we
introduce the basic concepts associated with solution algorithms. Although the algorithms
are appropriate for most of the models in Chapter 19, their computational complexity may
vary from simple polynomial functions of the number of state variables n to impractically
large exponential functions of n.

The Principle of Optimality

For dynamic programming solution methods to work, it is necessary that
the states, decisions, and objective function be defined so that the principle
of optimality is satisfied. Very often a problem modeled in these terms in an
apparently reasonable way will not satisfy this requirement. In such cases,
applying the computational procedures will likely produce solutions that are
either suboptimal or infeasible. Fortunately, it is possible to model most
problems so that the principle holds. As our discussion of the single
machine scheduling problem indicates, obtaining a valid model from an
invalid one very often involves defining a more complex state space.
Theoretically, there is no difficulty in doing this but the analyst must keep in
mind that as the size of the state space grows, the computational burden can
become prohibitive.

The principle of optimality, first articulated by Bellman, may be
stated in a number of ways. We provide several versions in an attempt to
further clarify the concept.

1. The optimal path from any given state to a final state depends only on
the identity of the given state and not on the path used to reach it.

2. An optimal policy has the property that whatever the initial state and
decision are, the remaining decisions must constitute an optimal policy
with regard to the state resulting from the first decision.

3. An optimal policy must contain only optimal subpolicies (Kaufmann
1967).

Components of Solution Algorithms 3

4. A policy is optimal if at a stated period, whatever the preceding
decisions may have been, the decisions still to be taken constitute an
optimal policy when the result of the previous decisions is included.

The principle of optimality seems so obvious that it requires no
proof. Indeed the proof is simply that if a solution contains a nonoptimal
sequence, it cannot be optimal since it could be improved by incorporating
the optimal partial sequence rather than the nonoptimal one. The danger is
that in formulating a dynamic programming model there is no clear way of
seeing or testing whether or not the principle is satisfied. Much depends on
the creativity and insights of the modeler. Alternatively, an extremely
complex model might be proposed that does satisfy the principle but is
much too elaborate to be of any practical value.

The Acyclic Decision Network

Dynamic programming models with discrete decision variables and a
discrete state space have the characteristics of a directed acyclic decision
network. This means that a sequence of decisions cannot encounter the
same state (node) twice. The network has no cycles and the states are said
to be partially ordered. Thus if we consider two states, either there is no
relation between them or one can be identified as preceding the other. We
write the relation between two states s i and s j as s i « s j if state s i comes
before s j. For an acyclic problem it is impossible that both

s i « s j and s j » s i

hold. Not all states need be related in the manner just described so we call
this a partial order rather than a complete order.

To illustrate this concept consider the decision network shown in
Fig. 1 for a path problem. The numbers on the nodes are used to identify
the states.

4 Dynamic Programming Methods

1 42

5

8

3 7

6 9

0

1

2

0 1 2 x1

2x

Figure 1. Path problem used to illustrate partial order

The partial order defined by the figure is as follows.

 s1 « s2 s1 « s3 s2 « s4 s2 « s5 s3 « s5

s3 « s6 s4 « s7 s5 « s7 s5 « s8 s6 « s8

s7 « s9 s8 « s9

The relationship is transitive in that if s i « s j and s j « sk then s i « sk is also
true. Note that several pairs of states in the figure are unrelated such as s2
and s6.

A partial order implies that some states must be final states denoted
by the set F. The corresponding nodes have no originating arcs. State s9 is
the only member of F in Fig. 1. Nodes with no terminating arcs
correspond to initial states and are denoted by the set I. State s1 is the sole
member of I in the example. The fact that the states have a partial order has
important computational implications.

A Requirement for the State Definition

The state s = (s1, s2, . . . , sm) is uniquely defined by the values assigned to
the state variables. Computational procedures require that the state values
perform an additional function -- that they define a complete ordering that
includes the partial ordering determined by the decision network. This will
be accomplished by ordering the states lexicographically.

Definition 1: Let a = (a1, a2, . . . , am) and b = (b1, b2, . . . , bm) be two
vectors of equal size. Vector a is said to be lexicographically larger than b

Components of Solution Algorithms 5

if the first component in which the two vectors differ, call it i, has ai > bi.
Similarly, if ai < bi, then a is said to be lexicographically smaller than b.

We use the symbols
L
> and

L
< to describe the relations of ‘lexicographically

larger than’ and ‘lexicographical smaller than,’ respectively. As usual, the
symbols > and < are used to indicate the relative magnitude of numbers.
Formally,

a
L
> b if ak = bk for k = 1, . . . , i –1, and ai > bi for some i ≤ m.

Note that the relation between ak and bk for k > i is not material to this
ordering.

For computational purposes, we add the additional restriction that
the states must be defined so that their lexicographic order includes the order
implied by the decision network of the problem. That is, if s i and s j are
two states with s i « s j in the decision network, the lexicographic order of

the vector representation of the states must be such that s i
L
< s j. This is a

restriction on the state definition.

To illustrate these concepts, consider Fig. 2 in which the network of

the path problem has been rotated 45o.

1

4

72

5

83

6

90

1

2

0 1 2

-1

-2

3 4 x1

2x

Figure 2. Rotated path problem

Referring to this figure, assume the state definition:

s = (s1, s2) where s1 = x1-coordinate and s2 = x2-coordinate.

The states are listed below in increasing lexicographic order

6 Dynamic Programming Methods

S = {(0, 0), (1, –1), (1, 1), (2, –2), (2, 0), (2, 2), (3, –1), (3, 1), (4, 0)}.

It is apparent that this ordering includes the ordering represented by the
network. The lexicographic order is a complete order and the state order
defined by the decision network is a partial order. It is only required that
the lexicographic ordering of the state values include the partial order.

As an example of a state definition that does not satisfy the
requirement, redefine the state variables of the path problem in Fig. 2 as

s1 = x2-coordinate and s2 = x1-coordinate.

This state space ordered lexicographically is

S = {(–2, 2), (–1, 1), (–1, 3), (0, 0), (0, 2), (0, 4), (1, 1), (1, 3), (2, 2)}.

It is clear that this order does not include the partial order of the decision
network.

It is always possible to define (and arrange) the state variables in a
natural way so their values indicate the proper order. For problems
involving stages, the requirement is easily fulfilled if the first state variable
is the stage number and the stages are numbered in the forward direction.

State Generation 7

20.2 State Generation
The simplest dynamic programming algorithms require that the state values, and hence the
state space, be generated and stored prior to initiating the computations. More efficient
procedures generate states and determine optimal decisions simultaneously. We describe
both approaches in later sections, but here we consider the generation process independent
of the solution process.

Recall that the m-dimensional vector s = (s1, s2, . . . , sm) uniquely identifies a state.
To provide procedures for generating and storing states that will work for a wide variety of
problem classes and solution techniques, it is necessary to know something about the
values that a state variable may assume. Because we are considering only state spaces that
are finite, it must be true that the values a particular state variable, say si, may assume must
be discrete and finite in number. For instance, si might take on all integer values from 0 to
10. Alternatively, si might assume only even values in the range 0 to 10, or perhaps all
values that are multiples of 0.5. Although there will be a finite number of values for a
particular state variable, they are not restricted to consecutive integers as is often assumed
in elementary discussions.

 We now describe two generation procedures. The first will exhaustively generate
all states whose values are within specified ranges of evenly spaced intervals. The second
will generate only those states that are “reachable” from the initial states in I.

Exhaustive Generation

When each state variable si is discrete and has a given finite range R(i), the
set of all states is simply the set of all possible combinations of the state
variable values. Assume R(i) is divided into intervals of equal length and let

H(i) = Max{si : i = 1,…, m},

L(i) = Min{si : i = 1,…, m},

d(i) = difference between successive values of si.

Then R(i) = H(i) – L(i) and there are R(i)/d(i) + 1 feasible points within this
range. A simple incrementing routine can be used to generate all values of s
over the ranges R(i), i = 1,…, m. The total number of states is

H (i)– L(i)

d(i)
+1











i=1

m

∏

If R(i) is not evenly divided, it would be necessary to enumerate
each feasible value separately. The same routine, however, could be used
to generate the state space.

8 Dynamic Programming Methods

Forward Generation

In many problems the values of the state variables may not have the regu-
larity required by the exhaustive generation procedure. For example, the
range of a state variable may depend on the values of the other state
variables. It is also possible that large numbers of states generated may not
actually be realizable in a specific problem situation. The set of all states
provided by exhaustive generation can be prohibitively large so any
reduction that can be achieved by invoking problem-specific logic can lead
to significant computational savings.

In this section, we provide an algorithm that only generates states
that can be reached from a given set of initial states. A reachable state is one
that lies on a path generated by a feasible sequence of decisions starting
from a feasible initial state. For the path problem in Fig. 2 only the states
shown in the figure are reachable from the initial state (0, 0). States such as
(1, 0) are not reachable and so will not be generated.

The algorithm begins with the set of initial states I. Referring to the
network in Fig. 2, I = {(0, 0)}. From each initial state, all possible
decisions are considered. The combination of decision d and state s is used
in the transition function to define a new reachable state: s ' = T(s , d). This
state is added to the state space if it is feasible and has not been generated
previously. When all the decisions for the first initial state have been
considered and all states reachable from that state have been generated, the
procedure chooses the next lexicographically larger state and generates all
feasible states reachable from it.

The computations continue until all states have been considered, and
will eventually terminate due to the finiteness of the state space and the use
of lexicographical ordering. The process is called forward generation
because states are generated using the forward transition function. Note that
a state s ' generated by the transition function will always be lexi-
cographically larger than the base state s from which it is generated. This
assures that no reachable states are missed.

Algorithm

Step 1. Start with a set of initial states I and store them in memory. Let the
state space S = I. Because of our labeling convention, the states in
I are lexicographically smaller than any states that can follow them
on a decision path. Let s be the lexicographically smallest state in
S .

Step 2. Find the set of decisions D(s) associated with s . For each decision
d ∈ D(s) find the new state s ' using the transition function s ' =
T(s , d). Search the state space to determine if s ' has already been
generated. If so, continue with the next decision. If not, add the
state to the state space; that is, put S ← S ∪ {s ' }. After all
decisions associated with s have been considered go to Step 3.

State Generation 9

Step 3. From those elements in S , find the next lexicographically larger
state than s . If there is none, stop, the state space is complete.
Otherwise let this state be s and go to Step 2.

For the network in Fig. 2, Table 1 highlights the results of the
algorithm at each iteration. The asterisk (*) in each column identifies the
base state s as the algorithm enters Step 2. The states following the base
state are those generated at the current iteration.

Table 1. Sequence of states obtained by forward generation

Iteration #

1 2 3 4 5 6 7 8 9

(0,0)* (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0)

(1,–1)* (1,–1) (1,–1) (1,–1) (1,–1) (1,–1) (1,–1) (1,–1)

(1,1) (1,1)* (1,1) (1,1) (1,1) (1,1) (1,1) (1,1)

(2,–2) (2,–2)* (2,–2) (2,–2) (2,–2) (2,–2) (2,–2)

(2,0) (2,0) (2,0)* (2,0) (2,0) (2,0) (2,0)

(2,2) (2,2) (2,2)* (2,2) (2,2) (2,2)

(3,–1) (3,–1) (3,–1)* (3,–1) (3,–1)

(3,1) (3,1) (3,1)* (3,1)

(4,0) (4,0)*

From the table we see how the state space grows as the algorithm
proceeds. The complete state space is obtained at iteration 9. This event is
signaled by the fact that there is no state lexicographically greater than (4,0).

The validity of this procedure depends on the fact that if s ' is
generated from s using the transition function T(s , d), we are assured that
s ' » s . Also, since all states that have yet to be considered for expansion
are lexicographically greater than s , none of them can create a state smaller
than s . Therefore, considering the states in the order prescribed by the
algorithm will generate all states that are reachable from the initial states in I.

A second example illustrates the benefits that can be achieved in state
space reduction by using the forward generation procedure instead of the
exhaustive procedure. To begin, consider the following resource allocation
problem with binary decision variables. No specific values for the objective
coefficients are given because they have no bearing on the size of the state
space.

10 Dynamic Programming Methods

Maximize z = c j x j
j =1

10

∑
subject to

9x1 + 7x2 + 6x3 + 8x4 + 3x5 + 3x6 + 5x7 + 5x8 + 7x10 ≤ 20

9x1 + 4x2 + 5x3 + x4 + 8x5 + x6 + 4x7 + 8x8 + 7x9 ≤ 20

x2 + 8x3 + 6x4 + 9x5 + 6x6 + 5x7 + 7x8 + 7x9 + 3x10 ≤ 20

 xj = 0 or 1, j = 1,... ,10

For a resource allocation problem with m constraints and n
variables, the number of state variables is m + 1. The constraints represent
limits on resource usage. In the DP model presented in Chapter 19 for this
problem, the first state variable s1 represents the index of the x variables. In
general, s1 ranges from 1 to n+1, with s1 = n+1 signaling a final state. For
the example, 1 ≤ s1 ≤ 11. State variables 2 through m + 1 correspond to
constraints 1 through m, respectively, with si indicating the amount of the
(i–1)th resource bi–1 used by a partial solution prior to the current decision.
When the exhaustive procedure is used, the total number of states is |S | =
n(b1+1) • • • (bm+1) which is an exponential function of m. This value is
(11)(21)(21)(21) = 101,871 for the example2.

To highlight the differences in the size of the state space as more
constraints are added, we first consider the problem with only constraint 1,
then with constraints 1 and 2, and finally with all three constraints.

For the forward generation procedure the initial state is s = (1, 0) for the
one constraint case, s = (1, 0, 0) for the two constraint case and s = (1, 0,
0, 0) for the three constraint case. Table 2 shows the number of states
identified using the exhaustive generation and forward generation methods.
If we consider the latter, there are only two states reachable from s = (1, 0,
0, 0). To see this, we use the transition function from Table 5 in the DP
Models chapter to determine s ' . Given s = (1, 0, 0, 0), two decisions are
possible, either d = 0 implying item 1 is excluded (x1 = 0) or d = 1 implying

item 1 is included (x1 = 1). When d = 0 the state is s '
1 = (2, 0, 0, 0).

Alternatively, when d = 1 the state is s '
2 = (2, 9, 9, 0). All other states of

the form (2, s2, s3, s4), where 1 ≤ s2, s3, s4 ≤ 20, are unreachable from (1,
0, 0, 0) and so are not generated. The exhaustive procedure enumerates
them all.

2 The Teach DP add-in exhaustive enumeration option includes only the initial states for s1 = 1. It

computes 92,611 states for this example.

State Generation 11

Table 2. Comparison of generation methods

Number of
constraints

Exhaustive
generation of states

Forward generation
of states

1 231 130

2 4,851 409

3 101,871 436

The results in Table 2 clearly demonstrate the exponential growth in
the state space when the exhaustive procedure is used, underscoring the
impracticality of this approach for all but the smallest knapsack problems.
Computation times are generally proportional to the number of states. Thus
a large state space is expensive in both computer time and storage.

Considering only reachable states as in forward generation yields a
much smaller state space. Although the growth indicated in Table 2 is
modest, it can still be exponential in the worst case so it would be
inappropriate to generalize from the example. Nevertheless, it is interesting
to consider the effect of the number of constraints on the number of feasible
solutions and the number of states required to represent them. When there

are no constraints the binary allocation problem has 2n feasible solutions,
where n is the number of variables. When a single constraint is added, the
number of feasible solutions must be reduced if the constraint has any effect
at all. As additional constraints are added, the number of solutions that
satisfies all the constraints must decline or at least grow no larger. Thus
despite the fact that the dynamic programming model becomes all but
impossible to solve when only a few constraints are present, the actual
number of solutions that are candidates for the optimum declines with the
number of constraints.

The forward generation procedure only generates feasible states.
The reason this number does not decline with the number of constraints is
that fewer feasible decision sequences can be represented by the same
states. With a single constraint a large number of feasible sequences or
partial sequences may have the same resource usage. With two constraints,
two solutions that use the save amount of the first resource may use
different amounts of the second resource thus generating two states rather
than one.

No general statement can be made concerning the growth in the
number of reachable states as a function of the number of constraints. It is
generally true, however, that the number of reachable states will be
considerably less than the number of states generated exhaustively. The
savings is at a cost of additional computer time, since forward generation
requires repeated use of the transition function while exhaustive generation
does not. Whether the expense is justified depends on the complexity of the
transition function and the number of reachable states. For some problem
classes forward generation will result in no savings at all, while for others it
will be decidedly effective.

12 Dynamic Programming Methods

20.3 Backward Recursion
The principle of optimality leads to the computational procedures of dynamic programming.
The most common, called backward recursion, is described in this section. As defined in
the DP Models chapter, the problem is to find a sequence of alternating states and decisions
from an initial state in I to a final state in F. The sequence is called a path. Our goal is to
determine the optimal path.

The Recursive Equation

Let n be the dimensions of the decision space and let Pj denote the jth path
through the state space; Pj is identified by the sequence s1j, d1j, s2j,
d2j,…, snj, dnj, sn+1, j, where sn+1, j is a final state. Assume for purposes
of presentation an additive objective function of the form

z(Pj) = ∑
i=1

n
 z(s ij, dij) + f(sn+1, j).

We assume our goal is to minimize the objective.

The optimal path P* is the one that solves the following problem

z(P*) = Minimizej∈J z(Pj)

where J is the set of all feasible paths. However, this is only a conceptual
representation of the problem because the set J is not known. We do not
search explicitly over all feasible paths but try to generate the optimal path
algorithmically. Therefore, there is no need to refer to a specific path j in
the presentation so we will drop the subscript j from the state and decision
vectors.

Define f(s) as the length of the optimal path from state s to a final
state sF ∈ F. The initial state is s1 and the initial decision is d1. The state
following d1 is determined by the transition function to be

s2 = T(s1, d1) (1)

The principle of optimality says that whatever the first decision is the
remaining decisions should be made optimally. Thus given d1, the cost of
the optimal path is

r(s1, d1) ≡ z(s1, d1) + f(s2)

where s2 is determined by Eq. (1). The optimal initial decision d1 is found

by evaluating r(s1, d) for all feasible decisions d ∈ D(s1) and choosing the
one that yields the minimum cost. Thus we must solve the following
optimization problem, typically by enumerating all elements of D(s1).

f(s1) = Minimize{f(s1, d) : d ∈ D(s1)}

Backward Recursion 13

= Minimize{z(s1, d) + f(s2) : d ∈ D(s1)} (2)

What is curious about problem (2) is that f(s1) depends on f(s2).
Functions that depend on themselves are called “recursive.” To solve this
recursive equation for s1 it is necessary to know the values of f(•) at all
states s2 that can be reached from s1 with a feasible decision. A similar
recursive equation can be derived for each successor state. In general, the
recursive equation for state s can be written as

f(s) = Minimize{r(s , d) : d ∈ D(s)}
where r(s , d) = z(s , d) + f(s ')

and s ' = T(s , d)

so f(s) = Minimize{z(s , d) + f(s ') : d ∈ D(s)}. (3)

We call z(s , d) the decision objective, r(s , d) the path objective for decision
d taken from state s , and f(s) the optimal value function for state s .
Equation (3) is referred to as the recurrence relation.

Solving the Recursive Equation

For an acyclic network the recursive equation can be easily solved by
starting at the final states in the set F and working backwards. Before
beginning the computations, it is necessary to specify the boundary
conditions which follow directly from the statement of the problem or from
the definition of f. When working backwards, values of f(•) must be
assigned for all s F ∈ F. For an additive path objective function, we often
have f(s F) = 0 but the assignment might actually be a function of s F.

Once the values of the terminal states are known, the recursive
equation (3) can be solved for all states whose decisions lead only to final
states. For an acyclic network, there must be some states that have this
property. The process continues until the optimal value function f(s) is
determined for each s ∈ S . When the state variables are defined so that
they satisfy the requirements of Section 20.1, the recursive equations can be
solved by considering the states in reverse lexicographic order.

Associated with each state is an optimal decision or policy, d*(s).
This is the decision that optimizes the recursive equation. The function of
optimal decisions defined over the state space is called the optimum policy
function.

The process of solving Eq. (3) for an acyclic network is called
backward recursion. The procedure moves backwards through the decision
network (in the reverse direction of the arcs) until the optimal path value and
accompanying decision is found for every state.

14 Dynamic Programming Methods

Algorithm for Backward Recursion

Step 1. Find the state with the largest lexicographic value. Let this be state
s .

Step 2. If the state is a final state, assign it a value f(s) by a rule or equation
peculiar to the problem being solved. If it is not a final state, solve
recursive equation (3) for f(s) to obtain d*(s). Store these values
for future use.

Step 3. Find the next lexicographically smaller state than s .

i. If none exists, stop, the backward recursion is complete.
Solve

f(s I) = Minimize{f(s) : s ∈ I}

to determine the optimal path value and the initial state s I from
which the optimal path originates. Perform forward recovery
to determine the optimal sequence of states and decision.

ii. If another state is found, let it be s and go to Step 2.

Forward Recovery

The algorithm finds the optimal path from every state to a final state but is
available only implicitly through the policy function. Given an initial state
s1, the first decision on the optimal path is d*(s1). The next state on the
optimal path is found by evaluating the transition function

s2 = T(s1, d*(s1))

to get s2. The next decision is the optimal policy for s2 given by d*(s2).
These operations proceed in an iterative manner, sequentially using the
transition function and the optimal policy function until a final state is
encountered (there may be several final states but we are only interested in
the one on the optimal path). We call this forward recovery of the optimum
because the calculations proceed in the forward direction (in the same
direction as the arcs) through the decision network. Thus backward re-
cursion must be followed by forward recovery. Note that the optimal path
is available for every state. Dynamic programming solves not one problem
but many problems, one for every s in S . This is why it is so important to
reduce the size of the space as much as possible.

Summary of Notation Associated with Backward Recursion

Optimal value function:

f(s) = value of the optimal path from state s to any final state

Path return:

r(s , d) = value of the path starting from state s with the first decision
d such that subsequent decisions are optimal with respect to
s ' , the state reached from s with decision d

Backward Recursion 15

Optimal policy or decision for state s :

d*(s) where f(s) = r(s , d*(s))

Tabular Format for Backward Recursion

To organize the computations, we introduce a tabular format that
summarizes the results at each iteration. All the information necessary to
perform the steps of backward recursion and recover the optimal solution
upon termination is included. The column headings are listed below. Of
course, other formats could be adopted for specific problem classes.

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Index s d s ' z f(s ') r(s , d) f(s) d*(s)

Col. (1) Index: This column assigns a numerical index to each state as it is
considered. The number 1 will be assigned to the first state, 2 to
the second state, and so on.

Col. (2) s : This is the vector of state variables describing the state under
consideration.

Col. (3) d: This is the vector of decision variables describing the decision
under consideration. For each value of s , all the decisions in the
set D(s) will be listed.

Col. (4) s ' : This is the state that is entered when decision d is taken in
state s . It is determined by the transition function T(s , d).

Col. (5) z: This is the decision objective. It will, in general, be a function
of s , d and s ' .

Col. (6) f(s '): This is the optimal value function for state s ' . Given a
current state s , its value will have been determined at a previous
iteration.

Col. (7) R(s , d): This is the path return obtained by making decision d in
state s and thereafter following the optimal path from state s ' .
With an additive path objective, this column will be the sum of
columns (5) and (6).

Col. (8) f(s): This is the optimal value function for state s . It is obtained
by taking the minimum (or maximum) of the values in Col. (7)
for a state s , and provides the solution to the recursive equation.

Col. (9) d*(s): This is the optimal policy for state s . It is the decision for
which the optimum was obtained in determining the value in Col.
(8).

16 Dynamic Programming Methods

Example 1

To illustrate the use of this format, the simple path problem in Fig. 3 is
solved to find the shortest path from state (0, 0) to state (4, 0). Although
we considered this problem in Chapter 19, the model for the rotated
problem is slightly different because we have added a component to
describe the recursive equation (see Table 3).

1

4

72

5

83

6

90

1

2

0 1 2

-1

-2

3 4 x1

2x

(8)

(5)

(5) (5)

(3) (3)

(6)

(9)

(9)

(7)

(2)

(4)

Figure 3. Rotated path problem with arc lengths assigned

Table 3. Backward recursion model for rotated path problem

Component Description
State The states are the nodes of the network identified by their

coordinates.

s = (s1, s2), where s1 = x1-coordinate and s2 = x2-coordinate

Initial state set I = {(0, 0)}

Final state set F = {(4, 0)}

State space S = {(0, 0), (1, –1), (1, 1), (2, –2), (2, 0), (2, 2), (3, –1), (3, 1), (4, 0)}

Decision d = (d), where d indicates the direction traveled

d =


+1 go up at +45o

–1 go down at –45o

Feasible decision set D(s) = {+1, –1 : s ' ∈ S}

Backward Recursion 17

Transition function s ' = T(s , d) where s '
1 = s1 + 1 and s '

2 = s2 + d

Decision objective z(s , d) = a(s , d), arc length indicated in Fig. 3

Path objective Minimize z(P) = z(s, d) + f (s f)
s∈S,d∈D(s)

∑
where s f is some state in F

Final value function f(s) = 0 for s ∈ F
Specification of boundary conditions.

Recursive equation f(s) = Minimize{a(s , d) + f(s ') : d ∈ D(s)}

The calculations for the example are given in Table 4 which is
constructed by listing the states in the order in which they must be
considered for backward recursion; that is, in reverse lexicographic order.
For each state, all the feasible decisions are listed together with all the
information necessary to solve the recursive equation. For example, let us
consider s = (3, 1) which is node 8 in Fig. 3. The only feasible decision at
this node is d = –1 so it is not necessary to solve Eq. (3). The transition
leads to s ' = (4, 0) which is a final state. The return function is computed
as follows: r(s , d) = a(s , d) + f(s ') = a((3, 1), –1) + f((4, 0)) = 9 + 0 = 9.
Thus f(3, 1) = 9. The same analysis applies at s = (3, –1). At s = (2, 0),
the computations are more informative because there are two possible
decisions. The components of the transition function are s '

1 = s1 + 1 = 3

and s '
2 = s2 + d = d so when d = 1, s ' = (3, 1) and when d = –1, s ' = (3,

–1). We now compute the corresponding return functions. For

d = 1: r((2, 0), 1) = a((2, 0), 1) + f(3, 1) = 3 + 9 = 12,

and for

d = –1: r((2, 0), –1) = a((2, 0), –1) + f(3, –1) = 5 + 6 = 11.

Solving recursive equation (3) gives

f(2, 0) = Minimize






r((2,0),1) = 12

r((r,0),–1) = 11 = 11

implying that the optimal decision vector at this state is d*(2, 0) = –1.

In general, when all the relevant values of r(s , d) are available, the
recursive equation (3) is solved to find the optimal value function f(s) and
the optimal policy d*(s) for each state. The bold arrows in Fig. 4 depict the
optimal policy at each node.

18 Dynamic Programming Methods

Table 4. Backward recursion for the path problem

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Index s d s ' z f(s ') r(s , d) f(s) d*(s)

1 (4, 0) –– 0 ∞
2 (3, 1) –1 (4, 0) 9 0 9 9 –1

3 (3, –1) 1 (4, 0) 6 0 6 6 1

4 (2, 2) –1 (3, 1) 2 9 11 11 –1

5 (2, 0) 1 (3, 1) 3 9 12

–1 (3, –1) 5 6 11 11 –1

6 (2, –2) 1 (3, –1) 9 6 15 15 1

7 (1, 1) 1 (2, 2) 5 11 16

–1 (2, 0) 3 11 14 14 –1

8 (1, –1) 1 (2, 0) 7 11 18 18 1

–1 (2, –2) 4 15 19

9 (0, 0) 1 (1, 1) 8 14 22 22 1

–1 (1, –1) 5 18 23

1

4

72

5

83

6

90

1

2

0 1 2

-1

-2

3 4 x1

2x

(8)

(5)

(5) (5)

(3) (3)

(6)

(9)

(9)

(7)

(2)

(4)

Figure 4. Optimal policy using backward recursion

Once the table has been constructed, the only remaining task is to
recover the optimal path from the initial node. Its length has already been
determined and appears as the last entry in column (8). In particular, f(0,0)
= 22. Figure 4 shows that an optimal path is available for every state to a
final state. This is always the case when backward recursion is used.

Backward Recursion 19

The forward recovery algorithm can also be implemented in tabular
format with the following four columns: s , d*(s), s ' and z(P*). Table 5
shows the results for the example. The first entry for s is a state in the
initial set I. The value of d*(s) for this state is found in Table 4 to be 1.
The transition equation then determines the next state s ' which is equal to
(1,1). This state is listed in the third column of the table and also as s in the
next row. The forth column lists the cumulative path length, where it is
seen once again that z(P*) = 22. The process continues until s ' is a member
of the final state set F. When this event occurs, the solution has been
completely determined. The optimal path can be read from the first and
second columns in the table. The solution process of backward recursion is
always followed by forward recovery.

Table 5. Forward recovery

s d*(s) s ' z(P*)

(0, 0) 1 (1, 1) ––

(1, 1) –1 (2, 0) 8

(2, 0) –1 (3, –1) 11

(3, –1) 1 (4, 0) 16

(4, 0) –– –– 22

20 Dynamic Programming Methods

20.4 Forward Recursion
Instead of starting at a final state and working backwards, for many problems it is possible
to determine the optimum by an opposite procedure called forward recursion. Backward
recovery is then used to identify the optimal path. The procedure may be more convenient
for some classes of problems, but for those in which the final state set is unknown, it is the
only feasible approach. Forward recursion also leads to a very powerful procedure called
reaching, described in the next section.

Backward Decision Set, Transition Function and Decision Objective

The backward decision set is denoted for each state by Db(s) with the
subscript “b” being used to distinguish it from the comparable set D(s)
previously defined for backward recursion. Db(s) is the set of decisions
that can be used to enter state s . For the simple rotated path problem
depicted in Fig. 3, Db(s) = {–1, +1}, where d = –1 implies entering s from
above and d = +1 implies entering s from below. Note that the elements of
D(s) and Db(s) are the same for this path problem but their meaning is quite
different; D(s) is the set of decisions that lead out of state s and Db(s) is the
set of decisions that lead in.

The backward transition function is defined as

sb = Tb(s , d), where d ∈ Db(s).

The function Tb determines the state that came before s when the decision
made to reach state s is d. We use sb to denote the previous state. Very
often the backward transition function can be obtained directly from the
forward transition function. For some problems, the forward transition
equation s ' = T(s , d) can be solved for s in terms of s ' and d.
Substituting first sb for s and then s for s ' , one obtains the backward
transition function. For instance, the rotated path problem has the forward
transition function components

s'
1 = s1 + 1 and s '

2 = s2 + d.

Solving these equations for s in terms of s ' yields

s1 = s'
1 – 1 and s2 = s '

2 – d.

Substituting first sb for s and then s for s ' , we obtain

sb1 = s1 – 1 and sb2 = s2 – d.

These equations give the backward transition function for the rotated path
problem.

For a given definition of the state variables, it is not always true that
there exists both forward and backward transition functions for a particular
problem. For instance, consider the path problem with turn penalties
(Section 19.5). The components of its forward transition function are

Forward Recursion 21

s'
1 = s1 + 1, s '

2 = s2 + d, s '
3 = d.

Thus it is not possible to solve for s3 in terms of s ' and d for the simple
reason that s3 does not appear in these equations. A little reflection will
show that it is impossible to know what the previous state was (in terms of
the third state variable) given the current state and the decision made to reach
it. Defining the set of state variables differently, though, will provide both
forward and backward transition functions. For the turn penalty problem,
the first two state variables remain unchanged, but the third state variable
sb3 should be defined as the direction to be traveled rather than the direction
last traveled.

The backward decision objective, zb(sb, d, s) is the immediate cost
of decision d when it leads to state s from state sb. For most problems of
interest, zb is a simple function of sb and d.

Forward Recursive Equation

The forward recursive equation is written

fb(s) = Minimize{rb(s , d) : d ∈ Db(s)}

where rb(s , d) = zb(d, s) + fb(sb)

and sb = Tb(s , d)

so fb(s) = Minimize{zb(d, s) + fb(sb) : d ∈ Db(s)}. (4)

The factors in these relationships have analogous definitions to their
counterparts in the backward recursive equation. In particular, fb(s) is the
cost of the optimal path arriving at s from an initial state as a consequence of
decision d. Sometimes it is convenient to express the decision return as an
explicit function of sb. In that case, we use the notation zb(sb, d, s).

The first step in solving (4) is to assign values to the initial states
(those with no predecessors). This is equivalent to specifying the boundary
conditions. Then the equation can be solved for each state that is an
immediate successor of the initial states. The procedure continues in the
forward direction until all states have been considered. The policy function
d*(s) now holds the information on the optimal decision entering each state
s ∈ S .

The optimum is identified by a backward recovery procedure.
Starting at the final state associated with the minimum cost, the policy
function identifies the optimal decision that led to that state. The backward
transition function then identifies the predecessor state in the optimal path.
The policy function, in turn, identifies the optimal decision entering that
state. The process continues sequentially using the optimal policy function
and the backward transition function until an initial state is encountered. At
this point the optimal path to the specified final state from an initial state has
been found. Note that the forward recursion procedure implicitly discovers
the optimal path to every state from an initial state.

22 Dynamic Programming Methods

Example 2

For the rotated path problem described in the previous section, Table 6
provides the additional definitions associated with forward recursion. The
calculations are shown in Table 7. Note that this table is constructed by
listing the states in the order in which they must be considered for forward
recursion, that is, in lexicographic order. All the calculations required to
obtain fb(s) and d*(s), the optimal path value and the optimum policy,
respectively, are included.

Table 6. Forward recursion model for rotated path problem

Component Description

Backward decision set Db(s) = {+1, –1}

Backward transition function sb = Tb(d, s)

sb1 = s1 – 1 and sb2 = s2 – d

Backward decision objective zb(s , d) = a(s , d), where a(s , d) is the length of the arc
entering s from decision d, taken from Fig. 3.

Initial value function f(s) = 0 for s ∈ I
Specification of boundary conditions.

Forward recursive equation fb(s) = Minimize{zb(s , d) + fb(sb) : d ∈ Db(s)}

To better understand how the calculations are performed, assume
that we are at s = (3,1) which is node 8 in Fig. 3. The decision set Db(3,1)
= {1,–1} and the backward transition function for each of the two state
components is sb1 = s1 – 1 and sb2 = s2 – d. To solve the recursive

equation (4) if is first necessary to evaluate the return function for all d ∈
Db(3, 1). The two cases are as follows.

d = 1 ⇒ sb = (2,0) and

rb((3,1), 1) = a((2,0), 1) + f(2,0) = 3 + 11 = 14

d = –1 ⇒ sb = (2,2) and

rb ((3,1), –1) = a((2,2), –1) + f(2,2) = 2 + 13 = 15

Combining these results leads to

Forward Recursion 23

f(3, 1) = Minimize






rb((3,1),1) = 14

rb((3,1),–1) = 15 = 14

so the optimal decision d*(3,1) = 1 which means it is best to reach (3,1)
from (2,0). Figure 5 depicts the optimal policy for each state, which is the
arc that should be traversed to enter that state. By implication, an optimal
path is available for every state from the initial state.

Table 7. Forward recursion results for the rotated path problem

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Index s d sb zb fb(sb) rb(s , d) fb(s) d*(s)

1 (0, 0) –– 0 ∞
2 (1, –1) –1 (0, 0) 5 0 5 5 –1

3 (1, 1) 1 (0, 0) 8 0 8 8 1

4 (2, –2) –1 (1, –1) 4 5 9 9 –1

5 (2, 0) 1 (1, –1) 7 5 12

–1 (1, 1) 3 8 11 11 –1

6 (2, 2) 1 (1, 1) 5 8 13 13 1

7 (3, –1) 1 (2, –2) 9 9 18

–1 (2, 0) 5 11 16 16 –1

8 (3, 1) 1 (2, 0) 3 11 14 14 1

–1 (2, 2) 2 13 15

9 (4, 0) 1 (3, –1) 6 16 22 22 1

–1 (3, 1) 9 14 23

24 Dynamic Programming Methods

1

4

72

5

83

6

90

1

2

0 1 2

-1

-2

3 4 x1

2x

(8)

(5)

(5) (5)

(3) (3)

(6)

(9)

(9)

(7)

(2)

(4)

Figure 5. Optimal policy using forward recursion

The length of the optimal path is the last entry in column (8) of Table
7; in particular, fb(4,0) = 22. The optimal solution is identified by using a
backward recovery algorithm. The procedure starts at the final state and
follows the optimal policy backward until an initial state is encountered.
The computations are given in Table 8. The last column lists the cumulative
path length, confirming once again that when we arrive at the initial state,
z(P*) = 22.

Table 8. Backward recovery

s d*(s) sb z(P*)

(4, 0) 1 (3, –1) ––

(3, –1) –1 (2, 0) 6

(2, 0) –1 (1, 1) 11

(1, 1) 1 (0, 0) 14

(0, 0) –– –– 22

Reaching 25

20.5 Reaching
Backward and forward recursion are known as pulling methods because the optimal
decision policy d*(s) tells us how to pull ourselves into a particular state from a
predecessor state. Reaching is an alternative solution technique that combines the forward
generation of states with forward recursion on an acyclic network. In effect, the optimal
decision policy is derived while the state space is being generated, a concurrent operation.
When all the states have been generated, the optimization is complete. The solution is
found with the backward recovery procedure.

Reaching can be extremely efficient especially when paired with bounding
techniques as discussed presently; however, it may not be appropriate for all problems.
The principal requirement is the availability of both forward and backward transition
functions and the forward recursive equation. At the end of the section, several situations
are identified in which reaching outperforms both backward and forward recursion.

Development

The forward recursive equation (4) can be written as

fb(s) = Minimize{zb(sb, d, s) + fb(sb) : d ∈ Db(s), sb =Tb(s , d)} (5)

In this section we write the decision objective explicitly in terms of the
previous state sb and the current state s . A few substitutions result in a
more convenient form for the computational procedure outlined below.
Note that

zb(sb, d, s) = z(sb, d, s)

and that sb = Tb(s , d), s = T(sb, d).

Using these relationships, we write (5) alternatively as

fb(s) = Minimize{z(sb, d, s) + fb(sb) : d ∈ D(sb), s = T(sb, d)} (6)

where the minimum is take over all states sb and decisions d at sb that lead
to the given state s .

 The strategy behind reaching is to solve Eq. (6) while the states are
being generated in the forward direction. Recall that the forward generation
procedure starts with the set of initial states I and the boundary conditions
fb(s) for all s ∈ I. For any state s ∈ S and feasible decision d ∈ D(s), a
new state s ' is created by the transition function T(s , d). Re stating (6) in
these terms first requires the replacement of s by s ' , and then the
replacement of sb by s . This yields

fb(s ') = Minimize{z(s , d, s ') + fb(s) : d ∈ D(s), s ' = T(s , d)} (7)

Note that the minimum is taken over all s such that s ' can be reached from s
when decision d ∈ D(s) is taken.

26 Dynamic Programming Methods

When a new state s ' is first generated the temporary assignment

-
fb(s ') = z(s , d, s ') + fb(s)

is made. This value is an upper bound on the actual value of fb(s ') because
it is only one of perhaps many possible ways of entering s ' . As the
generation process continues a particular state s ' may be reached through
other combinations of s and d. Whenever a state that already exists is gen-
erated again, the current path value is checked against the cost of the new

path just found. If the new path has a lower value,
-
fb(s ') and d*(s ') are

replaced. That is, when

-
fb(s ') > z(s , d, s ') + fb(s)

for some s ' = T(s , d), we replace
-
fb(s ') with z(s , d, s ') + fb(s) and d*(s ')

with d.

Reaching Algorithm

The generation process starts at the initial states in I and proceeds lexico-
graphically through the list of states already identified. For algorithmic
purposes we will use the same symbol S used to denote the complete state
space, to represent this list. When a particular state s ∈ S is selected for
forward generation, the true value of fb(s) must be the value of the optimal
path function as determined by (7). This follows because all possible paths
that enter s must come from a state that is lexicographically smaller than s .
When s is reached in the generation process, all immediate predecessors of

s must have been considered in the determination of
-
fb(s ') so this must be

the optimal value.

The algorithm below provides the details of the reaching procedure.
As can be seen, it simultaneously generates and optimizes the state space.

Step 1. Start with a set of initial states I and store them as list in memory.
Call the list S . Initialize fb(s) for all s ∈ I. These values must be

given or implied in the problem definition. Let s ∈ S be the
lexicographically smallest state available.

Step 2. Find the decision set D(s) associated with s . Assume that there are
l feasible decisions and let

D(s) = {d1, d2,…, dl}.

Set k = 1.

Step 3. Let the decision d = dk and find the successor state s ' to s using
the forward transition function:

s ' = T(s , d).

Reaching 27

If s is not feasible go to Step 4; otherwise, search the list S to
determine if s ' has already been generated.

i. If not, put S ← S ∪ {s ' }, d*(s ') ← dk and compute the
initial estimate of the optimal path value for state s ' .

-
fb(s ') = z(s , d, s ') + fb(s)

ii. If s ' ∈ S indicating that the state already exists, whenever

-
fb(s ') > z(s , d, s ') + fb(s)

put
-
fb(s ') ← z(s , d, s ') + fb(s) and d*(s ') ← d and go to

Step 4.

Step 4. Put k ← k + 1. If k > l, put fb(s) ←
-
fb(s) and go to Step 5 (all

feasible decisions have been considered at s so we can examine the
next state; also the optimal path to s is known).

If k ≤ l, go to Step 3.

Step 5. Find the next lexicographically larger state than s on the list S .
Rename this state s and go to Step 2. If no state can be found go to
Step 6.

Step 6. Stop, the state space is complete and the optimal path has been
found from all initial states in I to all states in S . Let F ⊂ S be the
set of final states. Solve

fb(s F) = Minimize{fb(s) : s ∈ F}

to determine the optimal path value and the final state s F on the
optimal path. Perform backward recovery to determine the optimal
sequence of states and decisions.

Example 3

Consider again the path problem in Fig. 3. Applying the reaching algorithm
to this problem gives the results shown in Table 9. We have rearranged and
renamed some of the columns to better reflect the order of the process.

28 Dynamic Programming Methods

Table 9. Reaching solution for rotated path problem

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Index s fb(s) d z s ' r(s , d)
-
fb(s ') d*(s ')

1 (0, 0) 0 –1 5 (1, –1) 5 5 –1

+1 8 (1, 1) 8 8 +1

2 (1, –1) 5 –1 4 (2, –2) 9 9 –1

+1 7 (2, 0) 12 12 +1

3 (1, 1) 8 –1 3 (2, 0) 11 Min(12, 11) = 11 –1

+1 5 (2, 2) 13 13 +1

4 (2, –2) 9 +1 9 (3, –1) 18 18 +1

5 (2, 0) 11 –1 5 (3, –1) 16 Min(18, 16) = 16 –1

+1 3 (3, 1) 14 14 +1

6 (2, 2) 13 –1 2 (3, 1) 15 Min(15, 14) = 14 +1

7 (3, –1) 16 +1 6 (4, 0) 22 22 +1

8 (3, 1) 14 –1 9 (4, 0) 23 Min(22, 23) = 22 +1

9 (4, 0) 22 ---

We begin the process at the initial state s = (0,0), with fb(0,0) = 0.
Two decisions are possible: d = –1 and d = 1. The former leads to s ' =
(1,–1) and the latter to s ' = (1,1). Both of these states are added to the list

S and temporary values of
-
fb(s ') are computed:

-
fb(1,–1) = a((0,0), –1) + fb(0,0) = 5 + 0 = 5

-
fb(1, 1) = a((0,0), 1) + fb(0,0) = 8 + 0 = 8

At iteration 2, we move to the next lexicographically larger state on

S which is s = (1,–1). The value of fb(1,–1) is fixed to
-
fb(1,–1) = 5 since

the temporary value must be the solution of the forward recursive equation.
The corresponding value of d*(1,–1) is also fixed to its current value. Once
again, we consider the two possible decisions d = –1 and d = 1 and use the
forward transition function to generate states s ' = (2,–2) and s ' = (2, 0),

respectively. The corresponding values of
-
fb(s ') are

-
fb(2,–2) = a((1,–1), –1) + fb(1,–1) = 4 + 5 = 9

and

Reaching 29

-
fb(2, 0) = a((1, –1), 1) + fb(1, –1) = 7 + 5 = 12.

This completes iteration 2 so we can fix
-
fb(1,–1) = 5 and d*(1,–1)

= –1. The state list is S = {(0,0), (1,–1), (1,1), (2,–2), (2,0)} and we
move to s = (1, 1), the next larger state as determined by the lexicographical
order. Reaching out from (1, 1) with decisions d = 1 and d = –1,
respectively, leads to one new state s ' = (2, 2) and one previously
encountered state s ' = (2, 0). For s ' = (2, 2) we have

-
fb(2, 2) = a((1, 1), 1) + fb(1, 1) = 5 + 8 = 13

and for s ' = (2, – 2) we have

-
fb(2, 0) = a((1, 1), –1) + fb(1, 1) = 3 + 8 = 11.

We show in the table that
-
fb(2, 0) is replaced by the minimum of its

previous value 12 and the new value 11. The optimal decision is also
updated. We continue in the same manner until the entire state space is
explored. The process only generates reachable states.

At the completion of iteration 8, the only remaining state is (4, 0)
which is in F. One more iteration is required to verify that the termination
condition is met; that is, there are no more states to explore. We now go to
Step 6 and would ordinarily solve the indicated optimization problem to
determine the optimal path value and the final state s F on the optimal path.
This is not necessary, though, because F is single-valued, implying that s F
= (4, 0). The optimal path is identified by backward recovery with the help
of d*(s), the optimal decision leading into each state s . For the example,
backward recovery begins with the unique terminal state (4, 0). The
optimal path is the same as the one identified by the forward recursion
procedure given in Table 8.

Reaching vs. Pulling

For the types dynamic programming models that we have addressed, it is
natural to ask which algorithmic approach will provide the best results. To
answer this question, consider again a finite acyclic network whose node set
consists of the integers 1 through n and whose arc set consist of all pairs
(i, j), where i and j are integers having 1 ≤ i < j ≤ n. As before, arcs point to

higher-numbered nodes. Let arc (i, j) have length aij, where – ∞ ≤ aij ≤ ∞.
If (i, j) cannot be traversed it is either omitted from the network or assigned
the length –∞ or +∞, depending on the direction of optimization.

For a minimization problem the goal is to find the shortest path from
node 1 to node j, for j = 2,…, n, while for a maximization problem the goal
is to find the longest path to each node j. To determine under what
circumstances the reaching method provides an advantage over the pulling
methods in Sections 20.3 and 20.4 for a minimization objective, let fj be the

30 Dynamic Programming Methods

length of the shortest path from node 1 to some node j. By the numbering
convention, this path has some final arc (i, j) such that i < j. Hence, with f1
= 0,

fj = min{fi + aij : i < j}, j = 2,…, n (8)

Forward recursion computes the right-hand side of Eq. (8) in ascending j,
and eventually finds the shortest path from node 1 to every other node. The
process is described in the following algorithm.

Pulling method (forward recursion):

1. Set v1 = 0 and vj = ∞ for j = 2,…, n.

2. DO for j = 2,…, n.

3. DO for i = 1,…, j – 1.

vj ← min{vj, vi + aij} (9)

To be precise, the expression x ← y means that x is to assume the
value now taken by y. Thus (9) replaces the label vj by vi + aij whenever
the latter is smaller. A “DO” statement means that the subsequent
instructions in the algorithm are to be executed for the specific sequence of
index values. Step 2 says that Step 3 is to be executed n – 1 times, first
with j = 2, then with j = 3, and so on. At the completion of Step 3 for each
j, we have fj = vj.

Alternatively, we can solve Eq. (8) by reaching out from a node i to
update the labels vj for all j > i. Again, the algorithm finds the shortest path
from node 1 to every other node as follows.

Reaching method:

1. Set v1 = 0 and vj = ∞ for j = 2,…, n.

2. DO for i = 1,…, n – 1.

3. DO for j = i + 1,…, n.

vj ← min{vj, vi + aij} (10)

Expressions (9) and (10) are identical, but the DO loops are
interchanged. Reaching executes (10) in ascending i and, for each i, in
ascending j. One can show by induction that the effect of i executions of the
nested DO loops is to set each label vk equal to the length of the shortest

path from node 1 to node k whose final arc (l, k) has l ≤ i. As a
consequence, reaching stops with vk = fk for all k.

The above pulling and reaching algorithms require work (number of
computational operations) proportional to n2. For sparse or structured
networks, faster procedures are available (see Denardo 1982).

Reaching 31

When Reaching Runs Faster

Given that (9) and (10) are identical, and that each is executed exactly once
per arc in the network, we can conclude that reaching and pulling entail the
same calculations. Moreover, when (9) or (10) is executed for arc (i, j),
label vi is known to equal fi but fj is not yet known.

The key difference between the two methods is that i varies on the
outer loop of reaching, but on the inner loop of pulling. We now describe a
simple (and hypothetical) situation in which reaching may run faster.
Suppose it is known prior to the start of the calculations that the f-values
will be properly computed even if we don’t execute (9) or (10) for all arcs
(i, j) having fi > 10. To exclude these arcs when doing reaching, it is
necessary to add a test to Step 2 that determines whether or not vi exceeds
10. If so, Step 3 is omitted. This test is performed on the outer loop; it gets
executed roughly n times. To exclude these arcs when doing pulling, we
must add the same test to Step 3 of the algorithm. If vi is greater than 10,
(9) is omitted. This test is necessarily performed on the inner loop which
gets executed roughly n2/2 times. (The exact numbers of these tests are (n
− 1) and (n − 1)n/2, respectively; the latter is larger for all n > 2.)

In the following discussion from Denardo, we present four
optimization problems whose structure accords reaching an advantage. In
each case, this advantage stems from the fact that the known f-value is
associated with a node on the outer loop of the algorithm. Consequently,
the savings is O(n2/2) rather than O(n), as it would be if the known f-value
were associated with a node on the inner loop.

First, suppose it turns out that no finite-length path exists from node
1 to certain other nodes. One has vj = fj = ∞ for these nodes. It is not

necessary to execute (9) or (10) for any arc (i, j) having vj = ∞. If reaching
is used, fewer tests are needed because i varies on the outer loop.

Second, consider a shortest-path problem in which one is solely
interested in fk for a particular k, and suppose that all arc lengths are
nonnegative. In this case, it is not necessary to execute (9) or (10) for any
arc (i, j) having vi ≥ vk. Checking for this is quicker with reaching because
i varies on the outer loop.

Third, consider a shortest-route problem in a directed acyclic
network where the initial node set I = {1}, but where the nodes are not
numbered so that each arc (i, j) satisfies i < j. To solve the recursion, one
could relabel the nodes and then use the pulling method. The number of
computer operations (arithmetic operations, comparisons, and memory
accesses) needed to relabel the nodes, however, is roughly the same as the
number of computer operations needed to determine the shortest path tree.
A saving can be obtained by combining relabeling with reaching as follows.
For each node i, initialize label b(i) by equating it to the number of arcs that
terminate at node i. Maintain a list L consisting of those nodes i having b(i)
= 0. Node 1 is the only beginning node, so L = {1} initially. Remove any
node i from L. Then, for each arc (i, j) emanating from node i, execute (10),

32 Dynamic Programming Methods

subtract 1 from b(j), and then put j onto L if b(j) = 0. Repeat this procedure
until L is empty.

Fourth, consider a model in which node i describes the state of the
system at time ti. Suppose that each arc (r, s) reflects a control
(proportional to cost) crs which is in effect from time tr to time ts, with tr <
ts. Suppose it is known a priori that a monotone control is optimal (e.g.,
an optimal path (1,…,h, i, j,…) has chi ≤ cij). This would occur, for
instance, in an inventory model where the optimal stock level is a monotone
function of time. The optimal path from node 1 to an intermediary node i
has some final arc (h, i). When reaching is used, it is only necessary to
execute (10) for those arcs (i, j) having chi ≤ cij . This allows us to prune the
network during the computations on the basis of structural information
associated with the problem. The test is accomplished more quickly with
reaching because i varies on the outer loop.

In the next section, we generalize the hypothetical above situation
and show how reaching can be combined with a bounding procedure to
reduce the size of the network. The main disadvantage of reaching is that it
can entail more memory accesses than traditional recursion during the
computations. A memory access refers to the transfer of data between the
storage registers of a computer and its main memory.

Elimination By Bounds

Our ability to solve dynamic programs is predominantly limited by the size
of the state space and the accompanying need to store excessive amounts of
information. This contrasts sharply with our ability to solve other types of
mathematical programs where the computational effort is the limiting factor.
One way to reduce the size of the state space is to identify, preferably as
early as possible in the calculations, those states that cannot possibly lie on
an optimal path. By eliminating those states, we also eliminate the paths
(and hence the states on those paths) emanating from them. We now
describe a fathoming test that can be performed at each iteration of a DP
algorithm. The reaching procedure is the best choice for implementation. If
the test is successful, the state is fathomed and a corresponding reduction in
the state space is realized.

To begin, consider a general DP whose state space can be
represented by an acyclic network where the objective is to determine the
minimum cost path from any initial state to any final state. Let P be the
collection of all feasible paths and let P* be the optimal path. The problem
can be stated as follows.

z(P*) = MinimizeP∈P z(P)

Now consider an arbitrary state s ∈ S and a feasible path Ps that

passes through s . Divide the path into two subpaths: P1
s which goes from

an initial state to s , and P2
s which goes from s to a final state. The objective

for path Ps is also divided into two components z(P1
s) and z(P2

s), where

Reaching 33

 z(Ps) = z(P1
s) + z(P2

s).

The reaching method starts from an initial state and derives for each
state, in increasing lexicographic order, the value fb(s). This is the objective

for the optimal path from an initial state to s . Thus, if P1 is the set of all
feasible subpaths from any state in I to s

fb(s) = MinimizeP
1
s ∈P

1 z(P1
s).

We can also define the quantity f(s) as the objective for the optimal
path from s to a final state. Letting P2 be the set of all subpaths from s to a
state in F, we have

f (s) = MinimizeP
2
s ∈P

2 z(P2
s).

Recall that f(s) is the value obtained by backward recursion; however, in the
reaching procedure this value is not available. Rather we assume the
availability of some computationally inexpensive procedure for obtaining a
lower bound, zLB(s), on f(s); that is,

zLB(s) ≤ f(s).

We also assume that it is possible to find a feasible path PB from
some state in I to some state in F with relatively little computational effort.
It is not necessary for this path to pass through the state s considered above.
Let zB = z(PB) be the objective value for the path. The subscript “B” stands
for “best” to indicate the “best solution found so far”; that is, the incumbent.

The bounding test for state s compares the sum of fb(s) and zLB(s)
to zB. If

zB ≤ fb(s) + zLB(s)

then any path through s can be no better than the solution already available,
PB, and s can be fathomed. If the above inequality does not hold, s may be
part of a path that is better than PB and cannot be fathomed. This is called
the bounding elimination test because the lower bound zLB(s) is used in the
test, and zB represents an upper bound on the optimum. These ideas are
illustrated in Fig. 6 which shows two paths from I to F.

34 Dynamic Programming Methods

x1

2x

Initial states, I

Final states, F

s

zB

f (s)b

z (s)LB

Figure 6. Components of bounding elimination test

The effectiveness of the test depends on the quality of the bounds zB
and zLB(s) and the ease with which they can be computed. The value zB
should be as small as possible, and the value of zLB(s) should be as large as
possible. There is always a tradeoff between the quality of the bounds and
the computational effort involved in obtaining them.

To implement the bounding procedures, two new user supplied
subroutines are required. We will call them RELAX and FEASIBLE, and
note that they are problem dependent. RELAX provides the lower bound
zLB(s), and usually involves solving a relaxed version of the original
problem. The solution to a minimization problem with relaxed constraints,
for example, will always yield the desired result.

The purpose of FEASIBLE is to determine a feasible path from s to
a state in F. Call this path P2

s . The fact that P2
s is feasible but not

necessarily optimal means that the objective z(P2
s) is an upper bound on

f(s). The combination of the optimal subpath to s which has the objective
fb(s) and the subpath P2

s provides us with a feasible path through the state
space with objective value

 fb(s) + z(P2
s).

This is an upper bound on the optimal solution z(P*) and is a candidate for
the best solution zB. In particular, if

fb(s) + z(P2
s) < zB

 then let zB = fb(s) + z(P2
s)

and replace the incumbent PB with the concatenation of P2
s and the optimal

path that yields fb(s).

Reaching 35

Any heuristic that provides a good feasible solution can be used to
obtain the path P2

s . A common implementation of FEASIBLE often
involves rounding the solution obtained by RELAX. This is illustrated in
Example 4 below.

Note that for state s if

 z(P2
s) = zLB(s)

then P2
s must be an optimal path from s to a state in F. The concatenation

of the optimal path to s and the subpath P2
s yields an optimal path through

s . In this case, s can also be fathomed because further exploration of the
state space from state s cannot yield a better solution.

The bounding elimination test is an addition to the reaching
procedure. Recall that this procedure considers each state in increasing
lexicographic order. The tests are performed immediately after a state s is
selected for the reaching operation but before any decisions from that state
have been considered. The idea is to eliminate the state, if possible, before
any new states are generated from it. The reaching algorithm is repeated
below for a minimization objective with the bounding modifications added.

Reaching Algorithm with Elimination Test

Step 1. Start with a set of initial states I and store them as list in memory.
Call the list S . Initialize fb(s) for all s ∈ I. These values must be

given in the problem definition. Let s ∈ S be the lexicographically

smallest state available. Set zB = ∞.

Step 2. Compute a lower bound zLB(s) on the optimal subpath from s to a
state in F.

i. If fb(s) + zLB(s) ≥ zB then fathom state s and go to Step 6.
Otherwise, try to find a feasible path from s to a final state in
F. Call it P2

s and compute the objective value z(P2
s). If a

feasible path cannot be found go to Step 3.

ii. If fb(s) + z(P2
s) ≥ zB go to Step 3.

iii. If fb(s) + z(P2
s) < zB then put zB ← fb(s) + z(P2

s) and let PB be

the concatenation of P2
s and the optimal path to s .

iv. If z(P2
s) = zLB(s) then fathom s and go to Step 6; otherwise,

go to Step 3.

Step 3. Find the set of decisions D(s) associated with s . Assume that
there are l feasible decisions and let

D(s) = {d1, d2,…, dl}.
Set k = 1 and go to Step 4.

36 Dynamic Programming Methods

Step 4. Let the current decision be d = dk and find the successor state s ' to
s using the forward transition function:

s ' = T(s , d).

If s ' is not feasible go to Step 5; otherwise, search the list S to
determine if s ' has already been generated.

i. If not, put S ← S ∪ {s ' }, d*(s ') ← dk and compute the
initial estimate of the optimal path value for state s ' .
-
fb(s ') = fb(s) + z(s , d, s ')

ii. If s ' ∈ S indicating that the state already exists, whenever
-
fb(s ') > fb(s) + z(s , d)

put
-
fb(s ') ← fb(s) + z(s , d), d*(s ') ← d and go to Step 5.

Step 5. Put k ← k + 1. If k > l, put fb(s) ←
-
fb(s) and go to Step 6 (all

feasible decisions have been considered at s so we can examine the
next state; also the optimal path to s is known). If k ≤ l, go to Step
4.

Step 6. Find the next lexicographically larger state than s on the list S \ F.
Rename this state s and go to Step 2. If no state can be found go to
Step 7.

Step 7. Stop, the state generation process is complete and the optimal path
has been found from all initial states in I to all states in S (note that
S will not in general contain all feasible states because some will
have been fathomed). The optimal path is PB. Perform backward
recovery to determine the optimal sequence of states and decisions.

At Step 6, a test is needed to determine if the next lexicographically
larger state is in F. It is always possible to test a state s ' when it is
generated at Step 4 but this would be inefficient because some states are
generated many times. When we arrive at Step 7, the optimal path is the
incumbent PB. Therefore, it is not necessary to examine all s ∈ F and pick
the one associated with the smallest value of fb(s) as was the case for the
reaching algorithm without the bounding subroutines.

Lower Bounding Procedure - RELAX

There are two conflicting goals to consider when selecting a procedure to
obtain the lower bound zLB(s). The first is that it should be computational
inexpensive because it will be applied to every state. The second is that it
should provide as large a value as possible. The larger the lower bound, the
more likely the current state can be fathomed.

There are also at least two ways to find a lower bound for a
particular problem. First, some constraints on the problem can be relaxed
so that the set of feasible solutions is larger. Solving the relaxed problem

Reaching 37

will yield an optimal solution with a value that can be no greater than the
optimum for the original problem. Second, the objective function can be
redesigned so that it lies entirely below the objective of the original problem
for every feasible solution. Then, the optimal solution of the new problem
will have a smaller value than the original.

Employing either of these two approaches, independently or in
combination, results in a relaxed problem whose solution is obtained with
what we called the RELAX procedure. There are many ways to form a
relaxed problem; however, ease of solution and bound quality are the
primary criteria used to guide the selection.

Knapsack Problem

We have already seen that a relaxation of the one constraint knapsack
problem can be obtained by replacing the integrality requirement xj = 0 or 1

by the requirement 0 ≤ xj ≤ 1 for j = 1,…, n. This is a relaxation because
all the noninteger values of the variables between 0 and 1 have been added
to the feasible region.

A multiple constraint binary knapsack problem is shown below.

Maximize
 n

Σ
j=1

 cjxj

subject to
 n

Σ
j=1

 aijxj ≤ bi i = 1,…, m (11)

xj = 0 or 1 j = 1,…, n

Again, an obvious relaxation is to replace the 0-1 variables with continuous
variables bounded below by zero and above by one. The resulting problem
is a linear program. The simplex method, say, would be the RELAX
procedure.

A simpler relaxation can be obtained by multiplying each constraint
by an arbitrary positive constant i (i = 1,…, m) and then summing. This
leads to what is called a surrogate constraint.

 n

Σ
j=1

 m

Σ
i=1

 iaijxj ≤

 m

Σ
i=1

 ibi (12)

Replacing (11) with (12) results in a single constraint knapsack problem.
Although the single and multiple knapsack problems require the same
amount of computational effort to solve in theory, in practice the former is
much easier. In any case, solving the relaxation as a single constraint
dynamic program or a single constraint LP will give a lower bound zLB(s) at
some state s .

38 Dynamic Programming Methods

Job Sequencing Problem

A relaxation of the sequencing problem with due dates discussed in Section
19.5 can be obtained by redefining the objective function. Consider the
nonsmooth cost function c(j, t) for job j as shown in Fig. 7. The cost is
zero if the job is finished before the due date d(j) but rises linearly at a rate
a(j) as the due date is exceeded. A linear function that provides a lower
bound to c(j, t) is shown in Fig. 8. This function intersects the cost axis at
the point –d(j)a(j) and rises at a rate a(j). For completion times t(j) less than
d(j) the function has negative values indicating a benefit, while it is the same
for times above d(j).

c(j, t)

a(j)

d(j)
0

t(j)

Figure 7. Cost function for sequencing
problem

c(j, t)

d(j)

a(j)

– d(j)a(j)

0
t(j)

Figure 8. Lower bound cost function

The problem with the new cost function is much easier to solve than
the original. To see this, let p(j) be the time to perform job j and denote by
jk the kth job in a sequence. The objective function can now be written as

z = ∑
k=1

n
 – d(jk)a(jk) + ∑

k=1

n
 a(jk)t(jk)

for some sequence (j1, j2,…, jn), where t(jk) is the completion time of job
jk.

The first term in the expression for z does not depend on the
sequence chosen, and is constant. Therefore, it can be dropped in the
optimization process. The remaining term is the objective function for the
linear sequencing problem. The optimal solution of this problem can be
found by ranking the jobs in the order of decreasing ratio a(j)/p(j) and
scheduling the jobs accordingly. Adding back the constant term provides
the desired lower bound on the optimum.

Reaching 39

Traveling Salesman Problem

Recall that the traveling salesman problem (TSP) is described by a point to
point travel cost matrix, as illustrated for a six city example in Table 10 (see
Section 8.6). The salesman must start at a given home base, traverse a
series of arcs that visits all other cities exactly once, and then return to the
home base. The optimal tour for this example is (1,4) à (4,3) à (3,5) à
(5,6) à (6,2) à (2,1)} with objective value zTSP = 63. The highlighted
cells in Table 10 are the arcs in this solution.

Table 10. Cost matrix for city pairs

1 2 3 4 5 6
1 –– 27 43 16 30 26
2 7 –– 16 1 30 25
3 20 13 –– 35 5 0
4 21 16 25 –– 18 18
5 12 46 27 48 –– 5
6 23 5 5 9 5 ––

A characteristic of a tour is that one and only cell must appear in
every row and column of the cost matrix. This suggests that the classical
assignment problem (AP), whose solutions have the same characteristic,
can be used as a relaxation for the TSP. For the AP the goal is to assign
each row to one and only one of the columns so that the total cost of the
assignment is minimized. The solution to the assignment problem for the
matrix in Table 10 is {(1,4), (2,1), (3,5), (4,2), (5,6), (6,3)} with
objective value zAP = 54. The corresponding cells are highlighted in Table
11.

Relating this solution to the TSP we see that two separate routes or
subtours can be identified: (1,4) à (4,2) à (2,1) and (3,5) à (5,6) à
(6,3). But TSP solutions are not allowed to have subtours so the AP
solution is not feasible to the TSP. The restriction that the salesman follow
a single tour has been dropped. The AP is thus a relaxation of the TSP, and
because it is much easier to solve, it is a good candidate for the RELAX
procedure of dynamic programming.

Table 11. Assignment problem solution

1 2 3 4 5 6
1 –– 27 43 16 30 26
2 7 –– 16 1 30 25
3 20 13 –– 35 5 0
4 21 16 25 –– 18 18
5 12 46 27 48 –– 5
6 23 5 5 9 5 ––

An even simpler bounding procedure can be devised by considering
a relaxation of the assignment problem where we select the minimum cost
cell in each row. The corresponding solution may have more than one cell

40 Dynamic Programming Methods

chosen from a column so, in effective, we have dropped the requirement
that one and only cell from each column be selected. For the cost matrix in
Table 10, one of several solutions that yields the same objective value is
{(1,4), (2,4), (3,6), (4,5), (5,6), (6,3)} with zRAP = 45. This solution
was found with almost no effort by scanning each row for the minimum
cost cell. The general relationship between the three objective function
values is zRAP ≤ zAP ≤ zTSP which was verified by the results: 45 < 54 < 63.

This example shows that there may be many relaxations available for
a given problem. There is usually a tradeoff between the effort required to
obtain a solution and the quality of the bound. By going from the
assignment problem to the relaxed assignment problem, for example, the
bound deteriorated by 16.7%. Because very large assignment problems can
be solved quite quickly, the reduced computational effort associated with
solving the relaxed assignment would not seem to offset the deterioration in
the bound, at least in this instance. Nevertheless, the selection of the best
bounding procedure can only be determined by empirical testing.

Example 4

Consider the knapsack problem below written with a minimization objective
to be consistent with the foregoing discussion.

Minimize z = –8x1– 3x2 – 7x3 – 5x4 – 6x5 – 9x6– 5x7 – 3x8

subject to x1 + x2 + 4x3 + 4x4 + 5x5 + 9x6+ 8x7 + 8x8 ≤ 20

xj = 0 or 1, j = 1,…,8

The variables are ordered such that the “bang/buck” ratio is decreasing,
where

 bang/buck = 



objective coefficient

constraint coefficient =






cj

aj
 .

This term derives from the maximization form of the problem where the
“bang” is the benefit from a project and the “buck” is its cost. Thus the
bang per buck ratio is the benefit per unit cost. If the goal is to maximize
benefits subject to a budget constraint on total cost, a greedy approach is to
choose the projects (set the corresponding variables to 1) with the greatest
bang per buck ratio. In our case, such a heuristic first sets x1 to 1 and then
in order x2 = 1, x3 = 1, x4 = 1 and x5 = 1. At this point the cumulative
benefit is 29 and the cumulative cost (resource usage) is 15. An attempt to
set x6 to 1 violates the constraint so we stop with the solution x = (1, 1, 1,
1, 1, 0, 0, 0) which is not optimal.

Although this greedy heuristic rarely yields the optimum, it is
extremely easy to execute and will form the basis of our FEASIBLE
subroutine for the example. For the RELAX subroutine we solve the
original problem without the integrality requirements on xj. That is, we

Reaching 41

substitute 0 ≤ xj ≤ 1 (j = 1,…,8) for the 0-1 constraint. What results is a
single constraint bounded variable linear program whose solution also
depends on the bang per buck ratios. The following greedy algorithm
yields the LP optimum.

Step 1.Set z0 = 0, b0 = 0 and j = 1.

Step 2.If j > n, then stop with zLB = zj-1.

If bj-1 + aj ≤ b, then

set xj = 1,

zj = zj-1 + cj,

bj = bj-1 + aj,

and go to Step 3.

If bj-1 + aj > b, then

set xj = (b – bj-1)/aj

zj = zj-1 + cjxj,

and stop with zLB = zj.

Step 3.Put j ← j + 1 and go to Step 2.

Note that zLB is a lower bound on the optimum of the original
problem because the integrality requirement on the variables has been
relaxed. The solution will not be feasible, though, when one of the
variables is fractional. If all variables turn out to be 0 or 1, the solution is
both feasible and optimal to the original problem.

Example 5

We consider again the 15 variable binary knapsack problem discussed in
Section 19.3 but with the items renumbered. In Table 12, the items are
arranged in decreasing order of the benefit/weight ratio to simplify the
determination of bounds. The weight limit is 30 and the objective is to
maximize total benefit.

Table 12. Data for binary knapsack problem

Item 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Benefit 32 37.2 33 29.1 34.6 22.4 18.6 23.6 19.8 25 11.5 12.8 8 9.5 14.1

Weight 16 19 17 15 18 12 10 13 11 14 7 8 5 6 9

Benefit/
Weight 2.00 1.96 1.94 1.94 1.92 1.87 1.86 1.82 1.80 1.79 1.64 1.60 1.60 1.58 1.57

42 Dynamic Programming Methods

The problem was solved three different ways to provide a
comparison of methods: (i) backward recursion with an exhaustively
generated state space, (ii) reaching without bounds, and (iii) reaching with
bounds. The bounds procedures were similar to those described in the
previous example. To allow for multiple optimal solutions, we did not
eliminate states whose upper and lower bounds were equal.

The results of the computations are shown in Table 13. The reduced
number of states obtained with reaching without bounds is due to the fact
that states not reachable from the initial state are not generated. When the
bounds procedures are added, a further reduction is achieved due to
fathoming.

Table 13. Comparison of computational procedure

Method Number of states

Exhaustive generation/backward recursion 466

Reaching without bounds 230

Reaching with bounds 68

Stochastic Dynamic Programming 43

20.6 Stochastic Dynamic Programming
Up until now it has been assumed that a decision taken from a given state leads to a known
result represented by a subsequent state in the network. In many situations, this is not the
case. Before the decision is made, outcomes may not be known with certainty although it
may be possible to describe them in probabilistic terms. For example, travel time on a
network arc may vary with the traffic, maintenance costs for a machine may be depend on
usage, or investment returns may be tied to the general health of the economy. In each
such instance, the most that we may able to say about a particular outcome is that it occurs
with a known probability, thus permitting us to specify a probability distribution over the
set of transitions at a given state. For the decision maker, this can be the most challenging
and frustrating aspect of the problem. Fortunately, the dynamic programming procedures
previously described can be modified in a straightforward manner to handle this type of
uncertainty giving rise to the field of stochastic dynamic programming.

Development

We continue to work with a finite, acyclic state space. Given a state s and a
decision d ∈ D(s), we will assume that the transition to a new state s ' is not
known a priori but is governed by a specified probability distribution. Let
P(s ' :s , d) be the mass density function that describes the probability of a
transition to the state s ' given the decision d is made at state s . For all
possible outcomes s ' , it is required that

∑
s '∈S

 P(s ' :s , d) = 1

and P(s ' :s , d) = 0 if s ' ∉ S .

We redefine several quantities formerly used for the deterministic case.

z(s , d, s ') = cost of starting in state s , making decision d and moving
to state s '

f(s) = minimum expected cost of arriving at a final state given
the path starts in state s

d*(s) = decision for state s that results in the minimum expected
cost

Given these definitions we obtain the expected path objective for
state s and decision d.

r(s , d) = ∑
s '∈S

 P(s ' :s , d)(z(s , d, s ') + f(s ')) (13)

The recursive equation that defines the function f(s) is as follows.

f(s) = Minimize{r(s , d) : d ∈ D(s)}

This equation can be solved using a slight variation of the procedure
developed for backward recursion. The solution that is obtained, though, is

44 Dynamic Programming Methods

no longer an alternating series of states and decision. The randomness in
the problem prevents us from knowing which state the system will be in
from one transition to the next. In fact, a solution corresponds to a
conditional strategy that indicates what the best course of action is should
we find ourselves in a particular state. Given that we are in state x , for
example, the optimal strategy might say to take action y . In most cases, the
uncertainty of transition makes it difficult to limit the state space in the
forward generation process. Thus it is often necessary to generate the
complete state space and associate a decision with each element.

Note that the use of the expected value criterion (13) in the objective
function is based on the implicit assumption that the decision maker is risk
neutral. This would be the case for a large organization like a government
agency, or when the same (or similar) problem had to be solved repeatedly.
If these conditions aren’t present, it would be best to use a different
objective, such as minimizing the maximum possible loss or maximizing
expected utility. The former is an extremely conservative strategy because it
ignores the probability of loss and only tries to minimize the worst possible
outcome. The latter requires that the decision maker specify his or her
attitude toward risk in the form of a utility function. Someone who is
optimistic or willing to take risks would have a convex utility function. For
this person, unit increases in gains provide increasingly greater rewards.
Someone who is conservative or wishes to avoid risk would have a concave
utility function where unit increases in gains provide decreasingly fewer
rewards. A decision maker who is risk neutral would have a linear utility
function.

Stochastic Equipment Replacement

To illustrate how dynamic programming can be applied to situations where
outcomes are uncertain, consider a problem where a machine of a certain
type is required for n years. Different machines are available with different
life expectancies. The life expectancy is not a fixed number but rather a
random variable defined over several years with accompanying
probabilities. The data for three options are given in Table 14. Machine 1,
for example, costs $100 and will last anywhere from one to three years with
probabilities p1 = 0.3, p2 = 0.5 and p3 = 0.2, respectively. For simplicity,
we do not consider the time value of money but it should be borne in mind
that spending $100 today is not the same as spending $100 five years from
now.

Table 14. Data for machine replacement example

Machine 1 Machine 2 Machine 3

Cost ($) 100 200 300

Life expectancy (yr) 1 2 3 2 3 4 5 4 5 6 7

Probability 0.3 0.5 0.2 0.1 0.3 0.4 0.2 0.1 0.2 0.4 0.3

A machine is replaced at the end of its life with one of the three
options. At time n the existing machine is discarded. No salvage value is

Stochastic Dynamic Programming 45

assumed. The goal is to determine an optimal strategy over the n-year
period. We will solve the problem for n = 10.

The DP model is outlined in Table 15 where it can be seen that the
state vector s has a single component corresponding to the number of years
that have transpired since time 0. The state space S ranges from 0 to 16.
Although the problem ends once the state s = 10 is reached, it might be that
at the end of year 9 we buy machine 3 and it lasts 7 years. This would put
us at the end of year 16, hence the need for states 11 – 16 in the definition
of S . To account for the uncertainty in the problem, we introduce a random
variable, call it x, corresponding to life expectancy of a machine. For each
of the three options, x follows the appropriate distribution given in Table
14. If we are in state 3 and purchase machine 2, for example, there is a 0.4
chance (p4 = 0.4 for machine 2) that we will wind up in state 7. In general,
s' = s + x which defines the transition function. Thus s' is also a random
variable.

Table 15. DP model for the stochastic equipment replacement problem

Component Description

State s = (s), where s is the years since the start of the problem.

Initial state set I = {(0)}; the process begins at time 0.

Final state set F = {(10,…,16)}; the process ends at the end of year 10. We
add states 11 through 16 to take care of the possibility that an
option lasts beyond the planning horizon.

State space S = {0, 1, 2,…,16}; the state space has 17 elements.

Decision d(s) = (d), the machine option to be installed at time s.

Feasible decision D(s) = {1, 2, 3} for s < 10

= ∅ for s ≥ 10

Transition function s' = T(s, d) or s' = s + x, where

x is the life of the option, a random variable whose probability
distribution depends on d as given in Table 12.

Decision objective z(s , d, s ') = c(d), the cost of decision d as given in Table 12.

Final value function f(s) = 0 for s ∈ F

Boundary conditions; no salvage value is assumed.

Recursive equation f(s) = Minimize{E[c(d) + f(s')] : d ∈ D(s)},

where E[c(d) + f(s')] = r(s, d) = ∑
s'∈S

 P (s':d)(c(d) + f(s' '))

46 Dynamic Programming Methods

The computations for the example are carried out in Table 16. The
columns for s ' and f(s ') are not included because the transitions are
governed by a probability distribution and therefore uncertain. The values
of r(s , d) are determine through an expected value computation and, as
indicated by Eq. (13), are the sum of products.

Table 16. Backward recursion for equipment replacement problem

(1) (2) (3) (4) (5) (6) (7)

Index s d z r(s , d) f(s) d*(s)

1 10 - 16 –– –– –– 0 ––
2 9 1 100 100 100 1
3 8 1 100 130 130 1

2 200 200
4 7 1 100 189 189 1

2 200 210
3 300 300

5 6 1 100 241.7 241.7 1
2 200 243
3 300 300

6 5 1 100 293 293 1
2 200 297.9
3 300 310

7 4 1 100 346.6 333 3
2 200 352.9
3 300 333

8 3 1 100 394.7 384.9 3
2 200 403.4
3 300 384.9

9 2 1 100 440.6 440.6 1
2 200 455.7
3 300 444.

10 1 1 100 491.2 491.2 1
2 200 503.9
3 300 492.2

11 0 1 100 544.6 544.6 1
2 200 551.3
3 300 545.3

After setting f(s) = 0 for all s in F, the backward recursion begins at
the end of year 9 (beginning of year 10) with s = 9. Although any of the
three machines can be purchased at this point, the decision d = 1 dominates

Stochastic Dynamic Programming 47

the other two options because all lead to a state in F and Machine 1 is the
least expensive; that is, c(1) = $100 < c(2) = $200 < c(3) = $300.
Therefore, we only include d = 1 in Table 16.

Moving to s = 8, we can either purchase Machine 1 or Machine 2
(the third option is dominated by the second so is not considered). The
computations are as follows:

d = 1:

r(8, 1) = p1(c(1) + f(9)) + p2(c(1) + f(10)) + p3(c(1) + f(11))

= 0.3(100 + 100) + 0.5(100 + 0) + 0.2(100 + 0)

= 130

d = 2:

r(8, 2) = p2(c(2) + f(10)) + p3(c(2) + f(11)) + p4(c(2) + f(12))

 + p5(c(2) + f(13))

= 0.1(200 + 0) + 0.3(200 + 0) + 0.4(200 + 0)

 + 0.2(200 + 0)

= 200

The recursive equation is

f(8) = Minimize






r(8,1) = 130

r(8,2) = 200 = 130.

These results are shown in columns (5) and (6) of Table 16. The optimal
decision given that we are in state s = 8 is to buy Machine 1. Therefore,
d*(8) = 1 as indicated in column (7).

Working backwards, it is necessary to consider all three options for
states s =7 through s = 0. The computations for the sole initial state s = 0
are given below.

d = 1:

r(0, 1) = p1(c(1) + f(1)) + p2(c(1) + f(2)) + p3(c(1) + f(3))

= 0.3(100 + 491.2) + 0.5(100 + 440.6) + 0.2(100 + 384.9)

= 544.6

d = 2:

r(0, 2) = p2(c(2) + f(2)) + p3(c(2) + f(3)) + p4(c(2) + f(4))

 + p5(c(2) + f(5))

= 0.1(200 + 440.6) + 0.3(200 + 384.9) + 0.4(200 + 333)

 + 0.2(200 + 293)

= 551.3
d = 3:

r(0, 3) = p4(c(3) + f(4)) + p5(c(3) + f(5)) + p6(c(3) + f(6))

48 Dynamic Programming Methods

 + p7(c(3) + f(7))

= 0.1(300 + 333) + 0.3(300 + 293) + 0.4(300 + 241.7)

 + 0.2(300 + 189)

= 545.3

The recursive equation is

f(8) = Minimize

r(0,1) = 544.6

r(0,2) = 551.3

r(0,3) = 545.3















 = 544.6.

The optimal policy is to buy Machine 1 at the initial state (d*(0) = 1) and at
every state except s = 3 or 4 when it is optimal to buy Machine 3 (d*(3) =
d*(4) = 3). Once again we point out that no optimal path through the state
space can be identified because the transition at each state is uncertain.

A more realistic example would include an age-dependent salvage
value for each machine still functioning when it enters a final state in F. One
way to incorporate this feature in the model is to redefine the decision
objective z(s , d, s ') in Table 15 to reflect salvage values. For any decision d
and state s that leads to a state s' in F, z(s , d, s ') would no longer be c(d)
but, say c(s' –s, d), where s' – s is the age of the machine when it enters state
s' . However, because the problem ends when we enter state 10, the cost
should really be a function of 10 – s rather than s' – s. For example, if
Machine 1 has a salvage value of $40 after one year of use, $20 after two
years of use and $0 after three years of use, z(9,1,10) = 100 – 40 = 60,
z(9,1,11) = z(9,1,12) = 60, while z(8,1,10) = 100 – 20 = 80, z(8,1,11) =
80, and z(7,1,10) = 100 – 0 = 100.

Other cost functions are possible but it would not be correct to
simply assign a terminal value corresponding to a salvage value to f(s) for s
∈ F unless f(s) where machine- and age-independent. Finally, if it were
assumed that a machine had a salvage value at every state it would be
necessary to redefine z(s , d, s ') accordingly for all s and s ' .

Exercises 49

20.7 Exercises

1. For the rectangular arrangement of Fig. 1, what state variable definitions are accept-
able?

2. For the binary knapsack problem with two resource constraints, give a state variable
definition that is acceptable and one that is unacceptable according to the requirements
stated in Section 20.1.

3. Consider the general sequencing problem presented in Section 19.6 and let n = 4. We
want to add the condition that job 3 must precede job 2 in the sequence. Incorporate
this constraint in the definition of D(s) and use forward generation to find the set of all
reachable states. The initial state is (0, 0, 0, 0).

4. An integer knapsack problem is given below. The values of the decisions are
unbounded from above.

Maximize z = 6x1 + 8x2 + 11x3

subject to 3x1 + 5x2 + 7x3 ≤ 10

xj ≥ 0 and integer, j = 1, 2, 3

Consider the dynamic programming model based on the line partitioning problem
discussed in Section 19.4.

a. Write out the state space obtained with exhaustive generation.

b. Write out the state space obtained with forward generation.

5. Consider the knapsack problem in Exercise 4 but restrict the variables to be either 0 or
1. Consider the dynamic programming model based on the resource allocation problem
presented in Section 19.3.

a. Write out the state space obtained with exhaustive generation.

b. Write out the state space obtained with forward generation.

Use backward recursion for Exercises 6 - 10. Show the table format introduced in Section
20.3 with all the states. Recover the optimal path and identify the accompanying states and
decisions. Perform the calculations manually and verify with the Teach DP add-in.

6. Solve the path problem in Fig.1 with a rectangular arrangement of states; let s1 be the
x1-coordinate and s2 be the x2-coordinate. Use the arc lengths shown in Fig. 3.

7. Solve the reliability problem given as Exercise 29 in the DP Models chapter. Limit the
state space to the following.

S = {(1, 0), (2, 0), (2, 100), (2, 200), (3, 0), (3, 50), (3, 100), (3, 150), (3, 200),

(3, 250), (3, 300), (4, 0), (4, 40), (4, 80), (4, 50), (4, 90), (4, 100), (4, 130),

(4, 140), (4, 150), (4, 180), (4, 190), (4, 200), (4, 230), (4, 240), (4, 250), (4,

50 Dynamic Programming Methods

280), (4, 290), (4, 300), (5, 0), (5, 40), (5, 80), (5, 50), (5, 90), (5, 100), (5,

130), (5, 140), (5, 150), (5, 180), (5, 190), (5, 200), (5, 230), (5, 240), (5,

250), (5, 280), (5, 290), (5, 300)}

8. Solve the line partitioning problem given as Example 4 in the DP Models chapter.

9. Solve the integer knapsack problem given as Exercise 10 in the DP Models chapter.

10. Solve the 4-job sequencing problem given as Example 10 in the DP Models chapter.

11. Find a state variable definition for the path problem with turn penalties that allows both
forward and backward transition functions. Use your algorithm to solve the rotated
path problem in Fig. 3 with a turn penalty of 10 for up turns and a penalty of 5 for
down turns.

12. Find the backward decision set and backward transition function for the binary knap-
sack problem with one or more constraints.

13. Find the backward decision set and backward transition function for the unbounded
integer knapsack problem with one constraint. Use only one state variable.

14. Consider the following optimization problem.

Maximize J = ∑
i=1

n-1
 gi(xi, xi+1)

subject to ∑
i=1

n
 xi = b

xi ≥ 0 and integer, i = 1,…, n

Give a dynamic programming formulation based on backward recursion. Be sure to
indicate the optimal value function, the boundary conditions, and what the solution
would be when the algorithm is executed.

15. Use backward recursion to solve the following problem manually. Draw the
associated decision network. Verify your answer by solving the same problem with
the Teach DP add-in.

Maximize z = 3x1 + 5x2 + 4x3 + 6x4 + 6x5 + x6

subject to 2x1 + 3x2 + 4x3 + 7x4 + 8x5 + x6 ≤ 15

xj = 0 or 1, j = 1,…,6

Exercises 51

16. Solve the problem below by hand using forward recursion.

Minimize z = 7x1 + 4x2 + 6x3 + x4 + 3x5 + 2x6 + 5x7

subject to 2x1 + x2 + 5x3 + 4x4 + 2x5 + 5x6 + 3x7 ≥ 13

x1 + 3x2 + 2x3 + 6x4 + x5 + 4x6 + 5x7 ≥ 15

xj = 0 or 1, j = 1,…,7

17. Solve the problem below by hand with the reaching procedure.

Minimize z = 8x1 + 3x2 + 7x3 + 5x4 + 6x5 + 9x6 + 5x7 + 3x8

subject to x1 + x2 + 4x3 + 4x4 + 5x5 + 9x6 + 8x7 + 8x8 ≥ 20

xj = 0 or 1, j = 1,…,8

18. Solve the following integer knapsack problem using the reaching method with bound
elimination. Compute upper bounds by solving the LP relaxation. Develop your own
procedure for finding lower bounds (feasible solutions).

Maximize z = 5x1 + 2x2 + 8x3 + 5x4 + 6x5 + 7x6

subject to 2x1 + x2 + 5x3 + 3x4 + 4x5 + 4x6 ≤ 23

xj ≥ 0 and integer, j = 1,…,6

19. Solve the job sequencing problem below using the reaching method in conjunction
with the bounding elimination test described in the text.

Job
j

Processing time
p(j)

Due date
d(j)

Cost per day
a(j)

1 6 11 $70

2 10 13 50

3 7 15 80

3 5 9 30

4 12 20 60

20. (Project Scheduling – Longest Path Problem) A project, such as building a house or
making a film, can be described by a set of activities, their duration, and a list of
precedent relations that indicate which activities must be completed before others can
start. For example, the frame of a house cannot be erected until the foundation is
laid. The problem of determining the length of a project can be represented by a
directed acyclic network, where the goal is to find the longest path (critical path) from
a nominal start node 1 to a nominal finish node n.

In an activity-on-the-node (AON) network model, the nodes correspond to
project activities while the arcs indicate precedence relations. One start node and one

52 Dynamic Programming Methods

finish node are introduced to tie the other nodes together. A single arc is introduced
between the start node and each node associated with an activity that has no
predecessors. Similarly, a single arc is introduced between each node associated
with an activity that has no successors and the finish node.

Consider the set of activities in the following table for the development of a
consumer product. The project begins by estimating the potential demand and ends
after market testing.

Activity Description
Immediate

predecessors
Duration
(weeks)

A Investigate demand –– 3

B Develop pricing strategy –– 1

C Design product –– 5

D Conduct promotional cost analysis A 1

E Manufacture prototype models C 6

F Perform product cost analysis E 1

G Perform final pricing analysis B,D,F 2

H Conduct market test G 8

a. Draw the AON network for this project. Number the nodes such that if arc (i, j)
exists, i < j.

b. Develop a forward recursion algorithm for finding the longest path from node 1 to
node j, for j = 2,…, n. Let ESk be the earliest time activity k can start, where ES1
= 0, and let Lk be its duration. The recursion should be based on ESk.

c. Develop a backward recursion algorithm for finding the longest path from node j
to node n, for j = n–1,…,1. Let LFk be the latest time activity k can finish, where
LFn = ESn. The recursion should be based on LFk.

c. Apply your forward and backward algorithms to the AON network developed in
part a.

d. The free slack of an activity is the time that it can be delayed without delaying
either the start of any succeeding activity or the end of the project. Total slack is
the time that the completion of an activity can be delayed without delaying the end
of the project. A delay of an activity that has total slack but no free slack reduces
the slack of other activities in the project. Activities with no slack are called critical
and fall on the longest path.

Write out general expressions that can be used to find the free slack (FSk)
and total slack (TSk) of an activity k. Note that it might be convenient to introduce
the early finish time of activity k, EFk, as well as its late start time, LSk. Determine
FSk and TSk for all k in the project.

Exercises 53

e. Develop a linear programming model that can be used to find the longest path in an
AON network. Let the decision variable be tj = the earliest time activity j can start.

21. Using forward recursion, solve the 2-dimensional integer knapsack problem for the
data given in the table below. Assume a budget of $13 and a weight capacity of 20 lb.

Item 1 2 3

Cost, $ 1.0 2.5 3.0

Benefit, $ 6.0 8.0 11.0

Weight, lb. 3.0 5.0 7.0

22. (Path Problem with Uncertainty) Consider the path problem shown in Fig. 3. You
have just discovered that the steering mechanism in your car is malfunctioning so it
will not always travel in the direction that you want it to. When you decide to go up,
you will actually go up with a 0.9 probability and go down with a 0.1 probability. If
you decide to go down, you will actually go up with a 0.4 probability and down with
a 0.6 probability. These rules do not hold where only one direction of travel is
possible (i.e., nodes 4 and 6). At those nodes travel in the feasible direction is
assured. In this risky situation, you decide to make decisions that will minimize your
expected travel time. Formulate and solve the dynamic programming model for this
problem.

23. Nickoli Putin is considering a game for which his probability of winning is 0.6 and
his probability of losing is 0.4. He has $50 and decides to play twice. At each play,
the bet will be either $10 or the whole amount currently held. If he wins, the amount
bet will be added to his total. If he loses, the amount bet will be deleted from his total.
Thus, in the first play the bet can be either $10 or $50. If the bet is $10, Nickoli can
end the play with either $40 or $60 depending on whether he wins or loses. If the bet
is $50, the results may be either 0 or $100. After the first play, he will bet again using
the same rules. After the second play, he will go home with the amount remaining.

Use dynamic programming to determine the strategy that will maximize Mr.
Putin’s expected holdings after two plays. Reduce the number of states by
considering only those states that can be reached during the play of the game.

24. The figure below shows a decision network where the numbers in parentheses
adjacent to the nodes represent states and the numbers along the arcs represent the
costs of decisions. The state vector has three components, s = (s1, s2, s3), and the
decision vector has a single component that takes on the values 1, 2 or 3. The
objective is to minimize the cost of going from (0, 0, 0) to (1, 1, 1).

54 Dynamic Programming Methods

(0, 0, 0)

(0, 1, 0)

(0, 1, 1)

(0, 0, 1)

10

12

9

(1, 0, 0)

(1, 1, 0)

(1, 1, 1)

(1, 0, 1)

4

1

5

8

7

5

8

5
7

a. Write the general forward transition equation which would define the transitions
shown in the figure.

b. Write a general expression that defines the feasible decisions at each state.

c. Solve the problem with backward recursion.

d. Write the general backward transition equation which would define the transitions
shown in the figure.

e. Solve the problem with forward recursion.

f. Solve the problem with the reaching procedure.

25. Consider the model for the path problem with turn penalties described in Section 19.5.
A specific network with n = 3 is shown below. The values of a(s , d) are given along
the arcs. The penalties are 1 = 10 for a left turn and 2 = 5 for a right turn.

3

2

1

1 2 3

(15)

(10) (10)

(12) (10)

(8)

(15) (14)

(9) (5)

(13) (16)

x1

2x

a. For the initial state (1, 1, 0), show the path P and evaluate z(P) for the sequence
of decisions 1, 0, 1, 0. Use vector notation to describe P.

b. Solve the problem with backward recursion using the tabular format suggested in
the text for the computations.

Exercises 55

c. Assume the optimal policy function d*(s) is given in the table below. Use the
forward recovery procedure to find the optimal path starting at the initial state
(1,1,1).

State (1, 1, 0) (1, 1, 1) (1, 2, 0) (1, 3, 0) (2, 1, 1) (2, 2, 0) (2, 2, 1)

d*(s) 0 1 1 1 0 1 0

State (2, 3, 0) (2, 3, 1) (3, 1, 1) (3, 2, 0) (3, 2, 1) (3, 3, 0) (3, 3, 1)

d*(s) 1 1 0 0 0 –– ––

26. The tables below show the transition and decision objective functions for a dynamic
programming model. A dash indicates that the transition is not allowed. The states
are listed in lexicographic order (A, B, C, D, E, F, G, H). States A and H are the
initial and final states, respectively. The recursive equation is

f(s) = Minimize{z(s , d) + f(s ') : d ∈ D(s), s ' = T (s , d)}

and the boundary condition is f(H) = 0.

Use backward recursion to find the optimal value of f(A) and the corresponding
path through the state space.

Transition function, T(s , d)

s A B C D E F G H

d = 1 B F F E F H H ––

d = 2 C C E G H G –– ––

d = 3 D –– –– –– G –– –– ––

Decision objective, z(s , d)

s A B C D E F G H

d = 1 2 30 21 8 8 11 15 ––

d = 2 8 5 12 15 21 3 –– ––

d = 3 12 –– –– –– 6 –– –– ––

27. You have a roll of paper 15 ft. long. The data in the table below shows your orders
for paper in different sizes. You want to cut the roll to maximize profit. Model this
problem as a dynamic program and solve.

56 Dynamic Programming Methods

Order (no. of rolls) Length (ft) Profit ($ per roll)

1 10 5
2 7 4
1 6 3
3 4 2.5

28. Solve the following integer, nonlinear program using backward recursion. Give all
alternate optima.

Maximize z = 5x1 + (x2)2 + (x3)3

subject to x1 + x2 + (x3)2 ≤ 6

xj ∈ {0, 1, 2, 3}, j = 1, 2, 3

Using the tabularized computational results, find the new solution when the right-hand
side of the constraint is changed to 5.

29. (Deterministic Dynamic Inventory - Production Problem) A firm wishes to establish a
production schedule for an item during the next n periods. Assume that demand dt (t
= 1,…, n) is known and that the manufacturing time is negligible. This means that
production in period t can be used to fill the demand in that period. If more items are
produced than needed, the excess is held in inventory at a cost. The goal is to devise a
schedule that minimizes the total production and inventory holding costs subject to the
requirement that all demand is satisfied on time and that the inventory at the end of
period n is at some predetermined level. To formulate the model, define the following
policy variables.

xi = production quantity in period t

it = inventory at the end of period t

such that xt and it are nonnegative integers. Now let ct(xt, it) = ct(xt) + ht(it) be the
cost functions for each period t, where

ct(xt) ≥ 0, ct(0) = 0, ht(it) ≥ 0, ht(0) = 0.

Finally, the inventory balance equations are

it = it-1 + xt – dt for t = 1,…, n

where it is assumed that i0 = 0 and that each demand dt is a nonnegative integer.

For a 4-period planning horizon (n = 4), the production cost functions are
given in the table below. For example, the total cost when x1 = 12 is 86 (= 10 × 5 +
6 × 5 + 3 × 2). Note that the data in the table imply that the production cost functions
are concave; they exhibit economies of scale. Assume the holding cost functions are
ht(it) = htit, where h1 = 1, h2 = 2, and h3 = 1. Let the demand requirements be

Exercises 57

d1 = 10, d2 = 3, d3 = 17, d4 = 23.

a. Develop a dynamic programming model for this problem and then use it to find an
optimal production schedule. Be sure to indicate total production xt and ending
inventory it in each period t.

b. Indicate the impact of requiring an additional unit in period 1 (that is, let d1 = 11).
Also, consider separately, an additional unit in period 2; in period 3; in period 4.

c. Find an optimal schedule where all ht = 0. Also where all ht = 5.

 Unit production cost

No. of items, k Period 1 Period 2 Period 3 Period 4

 1 ≤ k ≤ 5 10 8 12 9

 6 ≤ k ≤ 10 6 5 7 8

11 ≤ k ≤ 15 3 3 6 4

16 ≤ k 1 2 1 4

d. Find an optimal production schedule where the demand requirements are revised
such that d1 = 3 and d2 = 10. Also, when d3 = 23 and d4 = 17, and when d2 = 17
and d3 = 3. (Solve each case separately)

e. Find an optimal production schedule for the original data when the holding cost
function is ht(it) = it for every Period t.

30. (Inventory with Backlogging) Consider the data in the previous exercise and assume
that backlogging is permitted; i.e., shortages in period t can be filled by production in
some future period. Let the inventory holding and backlog penalty cost function be

ht(it)
 =



 htit if it ≥ 0

–ptit if it ≤ 0
 for every period t.

(All demand must be met by the end of the horizon.) In each part below, find an
optimal production schedule using dynamic programming and indicate ending
inventory or backlog in each period.

a. ht = pt = 0.

b. ht = pt = 1.

c. Suppose the inventory holding and backlog penalty cost function is ht(it) = |it|
for every period t.

58 Dynamic Programming Methods

31. The following information is available for a stochastic dynamic program.

i. s = (s1, s2), where 1 ≤ s1 ≤ 3 and 1 ≤ s2 ≤ 3

ii. I = {(1,1)} and F = {(3, s2) : 1 ≤ s2 ≤ 3}

iii. d = (d), where for s ∉ S , D(s) = {0, 1}

iv. The forward transition function for the first state variable is s'
1 = s1 + 1.

v. The transitions with respect to the second state variable are uncertain and are
governed by the probabilities given in the following tables. These probabilities
are independent of the value of s1.

Transition probabilities, P(s '
2 : s2, d)

For s2 = 1 For s2 = 2 For s2 = 3

s'
2

1 2 3 1 2 3 1 2 3

d = 0 0.1 0.3 0.6 0.3 0.5 0.2 0.5 0.5 0.0

d = 1 0.5 0.2 0.3 0.2 0.4 0.6 0.0 0.3 0.7

The only costs involved in the problem are those associated with the final states. The
values of f(s) for s ∈ F are f(3,1) = 30, f(3,2) = 20 and f(3,3) = 10. There are no
costs associated with the decisions. Use backward recursion to minimize the expected
cost of going from the initial state (1, 1) to a final state s ∈ F.

32. Consider the stochastic dynamic programming model of a finite inventory problem
given in the table below.

Component Description
State s = (s1, s2), where

s1 = current period

s2 = inventory level at the beginning of the current period

Initial state set I = {(1, s2) : s2 = 0,1,2,3 }

Final state set F = {(T+1, s2) : s2 = 0,1,2,3}, where T is the time horizon.

State space S = {(s1, s2) : s1 = 1,…, T+1, s2 = 0,1,2,3 }

Decision d = (d), where d is the amount of product to order (restricted to
integer values).

Exercises 59

Feasible decision set D(s) = {0, 1, 2, 3 : s ' = T(s , d) ∈ S}, such that

d must be chosen so that there is a zero probability that the inven-
tory level exceeds 3 or falls below 0.

Transition function s ' = T(s , d), where

s'
1 = s1 + 1

s'
2 = s2 – (s1) + d

Here, (s1) is the demand in period s1 and follows the probability

distribution given in the next table.

Decision objective z(s , d, s ') =


5 + d + 2(s'

2)2 for d > 0

2(s'
2)2 for d = 0

Path objective Minimize z(P) = E






∑

s∈S , d∈D(s)

 z(s , d, s ')

Final value function f(s) = 0 for s ∈ F

Recursive equation f(s) = Minimize E[{a(s , d) + f(s ') : d ∈ D(s)}]

Probability distribution for demand in period 1

1 0 1 2

P(1) 0.4 0.4 0.2

Assume that we have already computed the optimal value functions

f(2, 0) = 100, f(2, 1) = 30, f(2, 2) = 40, f(2, 3) = 50.

Now find the optimal policy for period 1 when the inventory level at the beginning of
the period is 2.

33. Solve the soot collection problem (Exercise 28 in the DP Models chapter) with
forward recursion. Provide the recursive equation.

34. The matrix below shows the travel cost between city pairs for a traveling salesman
(Section 19.6 of the DP Models chapter).

60 Dynamic Programming Methods

a. Suggest a heuristic that could be used to find an upper bound on the optimal
solution.

Cost matrix for city pairs

1 2 3 4 5 6

1 –– 32 30 27 25 40

2 9 –– 16 10 30 25

3 15 16 –– 21 41 14

4 31 7 24 –– 18 21

5 22 31 7 41 –– 9

6 14 12 16 15 22 ––

b. Solve the corresponding assignment problem to find a lower bound on the cost of
the optimal tour.

c. Solve the TSP by hand using a reaching algorithm with bounds.

Bibliography 61

Bibliography

Bard, J.F, “Assembly Line Balancing with Parallel Workstations and Dead Time,”
International Journal of Production Research, Vol. 27, No. 6, pp. 1005-1018, 1989

Bard, J.F., K. Venkatraman and T.A. Feo, “Single Machine Scheduling with Flow Time
and Earliness Penalties,” Journal of Global Optimization, Vol. 3, pp. 289-309, 1993.

Bellman, R.E., Dynamic Programming, Princeton University Press, Princeton, NJ, 1957.

Bellman, R.E. and S.E. Dreyfus, Applied Dynamic Programming, Princeton University
Press, Princeton, NJ, 1962.

Denardo, E.V., Dynamic Programming: Models and Applications, Prentice Hall,
Engelwood Cliffs, NJ, 1982.

Denardo, E.V. and B.L. Fox, “Shortest Route Methods, 1. Reaching, Pruning and
Buckets,” Operations Research, Vol. 27, pp. 161-186, 1979.

Dijkstra, E.W., “A Note on Two Problems in Connexion with Graphs,” Numerische
Mathematik, Vol. 1, pp. 269-271, 1959.

Dreyfus, S.E. and A.M. Law, The Art and Theory of Dynamic Programming, Academic
Press, New York, 1977.

Kaufmann, A., Graphs, Dynamic Programming and Finite Games, Academic Press, New
York, 1967.

Schrage, L. and K.R. Baker, “Dynamic Programming Solution of Sequencing Problems
with Precedence Constraints,” Operations Research, Vol. 26, No. 3, pp. 444-449, 1973.

Wagner, H. and T. Whitin, “Dynamic Version of the Economic Lot Size Model,”
Management Science, Vol. 5, pp. 89-96, 1958.

Yen, J.Y., “Finding the Lengths of All Shortest Paths in N-Node Nonnegative Distance

Complete Networks Using
1
2 N3 Additions and N3 Comparisons,” Journal of the

Association of Computing Machinery, Vol. 19, pp. 423-424, 1972.

