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Benders' Method
Paul A Jensen

The mixed integer programming model has some variables, x, identified as real variables
and some variables, y, identified as integer variables.  Except for the integrality
requirements on y, the model has the linear programming format.

Model P:  The original model.
Z*  = Max c1x + c2y

Subject to:
A1x + A2y < b
x > 0,   y > 0 and integer.

In the following we will obtain several related formulations and each will be given a letter
designation.  We call the original model P.  The various vectors and matrices shown in the
formulation have size and orientation appropriate to the vectors x, y, and b.

Benders' method decomposes this model in such a way that it can be solved as an
alternating sequence of linear programs and pure integer programs.  Fig.12 shows a
schematic representation of the theoretical development that leads to the decomposition.
Starting from P, the first step to the right assumes that the integer vector y is fixed to some
specific value to obtain model PX.  The terms representing y now contribute constants to
the objective function and constraints.  We have moved the constants to the right side of the
constraints and leave the constant term in the objective function.  Model PX  is a linear
programming model. For the moment assume that it has a feasible solution.  The value of
the objective function at optimality, v 0(y), is shown as a function of y because it will
assume different values for different y.  It must be a lower bound on the optimal objective
function of P since it represents a feasible solution for some given value of y.  Thus

v 0(y) < Z*     for any given y. (1)

Since PX is a linear program, we can take its dual to obtain model D1.  The
constant term of the objective of PX has been temporarily dropped to obtain the dual.  It is
important to note that the objective coefficients of D1 depend on y while the constraints do
not.  Thus, the feasible region of D1 is independent of y.  The optimal solution to the dual
has the same value as the optimal solution to the primal, so

w 0(y) + c2y = v 0(y). (2)

A different way to write D1 is shown as D2.  The latter statement follows from
the fact that an optimum solution to D1 must be at one of the extreme points of its feasible
region.  Although D2 suggests a search over all the feasible extreme points in the set U  to
solve the linear program, this obviously inefficient procedure will not be adopted.  Model
D2 is an intermediate formulation in the development.
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Model P:  The original model.
A mixed integer program.
Z*  =Max c1x + c2y
Subject to:

A1x+ A2y< b
x > 0,   y > 0 and integer.

fi

PX :  Let y be fixed.
A linear program in x.
v 0(y) = Max c1x + c2y
Subject to:

A1x < b – A2y
x > 0

› fl
P K: The equivalent of P*.
An integer program in y and Z.
Z K = Max Z
Subject to:

Z <  c2y + u1(b – A2y)
Z <  c2y + u2(b – A2y)

•
•

Z <  c2y + uK (b – A2y)
y ≥ 0 and integer.

D1:  Take the dual of PX.
A linear program in u.
w 0(y) = Min u ( b – A2y)
Subject to:

u A1 > c1
u > 0

fl
D2 :  Solve D1  by enumerating the
extreme points.
A finite enumeration of U.
w 0(y) = Min uk ( b – A2y)
for uk  e U

 (Set of extreme points of D1)
› fl

P*:  Let y be variable.
Solve P by enumerating over y and
the extreme points of D1.
A finite enumeration.
Z* = Max {c2y + Min uk ( b  – A2y)}

y uk
y > 0 and integer and uk  e U

‹

P1:  Solve PX   by enumerating the
extreme points of D1.
A finite enumeration of U.
v 0(y) = c2y + w 0(y)
           = c2y + Min uk ( b  – A2y)

for uk  e U

A schematic showing the theoretical development of Benders' Method.
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Replacing w 0(y) by its equivalent in Eq. (2), results in model P1.

v 0(y) = c2y +  Min {uk (b – A2y)} (3)
uk eU

In P* we again let y be variable.  The optimum y is found by minimizing v0(y)
over all alternative y.  P* is equivalent to the original P.   To remove the minimization
from the objective function, we use a standard trick of mathematical programming to
obtain the equivalent model PK.   In this model there are all integer variables y with one
real variable Z.   Here K is the number of extreme points of D2, and there is a constraint for
each extreme point.  The goal is to maximize Z.  Model PK completes the development
because it is equivalent to the original model P.  Although the new model cannot be
practically solved because its formulation requires that all extreme points of D1 be
identified, it does provide the basis for the iterative algorithm that follows.

Model D1 is an important component of the algorithm so it is necessary to discuss
conditions under which this model might have no feasible solution or might have an
unbounded solution.  From duality theory, we know that if D1 has no feasible solution, its
dual, model PX , must either have no feasible solution or must also be unbounded.  The
feasible region of D1 does not depend on y. When no feasible solution exists for D1, then
PX must be either infeasible or unbounded for all y.  This case is not interesting for
practical problems, so we assume that D1 has feasible solutions.

When model D1 has an unbounded solution for some y, model PX  is infeasible
for that y.  This possibility occurs frequently in practical problems and must be
accommodated in the algorithm.  Here we adopt a simple solution that may result in
numerical difficulties when solving large problems.  We add the following constraint to D1
that assures a bounded solution.

u1 + u2 + ... + um  < M, (4)

where M  is a large positive number.  This is equivalent to adding an artificial variable to
PX that assures feasibility.

Bounds on the Optimal Objective
As will be described in the next section, we will solve a relaxation of PK that includes only
a subset of its constraints.  Let a subset of the extreme points U   be the set

U r = {u1, u2, ... , ur }.
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Define the model P r as
Model P r:

Z r = Max Z
Subject to:
Z <  c2y + u1(b – A2y)
Z <  c2y + u2(b – A2y)

.

.
Z <  c2y + ur (b – A2y)

y > 0 and integer.

When r  < K, this is a relaxation of PK, so the value of Z r is an upper bound on the optimal
solution.

Z r > Z*. (5)

Combining Eq. (1) and Eq. (2), the solution to D1 for any given y will provide a
lower bound to the optimal objective value

v 0(y)  =w 0(y) + c2y < Z*     for any given y. (6)

Thus we have procedures for finding both lower and upper bounds on the optimal objective
value.

Benders' Algorithm
Benders' algorithm involves sequentially solving the linear program D1 for specific values
of y, and solving the integer program P r for increasing values of r.  At each iteration,
lower and upper bounds are computed.  When the bounds become equal, the algorithm
terminates with the optimal solution.  The hope is that termination will come when r is
considerably less than K .  Finite termination is assured because model D1 must have a
finite number of extreme points.

Step 0  Initialization : Set the objective coefficients of D1  to zero and solve.  If no feasible
solution exists, stop, because either P has no feasible solution or is unbounded for all y.
If D1 has an optimum, let u1 be the optimal solution.  Using u1 form the constraint

Z  < c2y + u1(b – A2y). (7)
Let ZL = – •.
Let r  = 1.

Step 1   Solve the Integer Program : Solve problem P r to find the optimum solution yr
with objective value Z r.
Compute the upper bound to the optimum solution of P.
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ZU  = Z r. (8)

Step 2  Solve the Linear Program :  Let y = yr , compute the new objective function for the
linear program D1,

w 0( yr ) = Min u (b – A2yr ), (9)

and solve.  Let ur +1 be the optimal solution with objective value

w 0( yr ) = ur +1 (b – A2yr ). (10)

Compute
v 0(yr ) = c2yr +  w 0( yr ). (11)

If v 0(yr ) > ZL ,

then replace the lower bound.

ZL = v 0(yr ).

If v 0(yr ) < ZL ,

do not replace the lower bound.

Step 3  Test for Optimality
If ZL < ZU

the solution is not optimal, so form a new constraint for the integer program.

Z  < c2y + ur +1(b – A2y). (12)

Replace r by r +1 and return to step 1.

If ZL = ZU ,

the solution is optimum, so proceed to step 4.

Step 4  Termination :   The optimum solution is yr.  The optimum x is the dual of the
optimum solution of problem D1 solved with yr .

––––––––––––––––––––––––––
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Example Problem
Consider the following mixed integer program with three 0–1 integer and three real
variables.

Z* = Max 8x1 + 6x2 – 2x3 –42y1 –18y2 –33y3
Subject to:

  2x1 + x2 – x3 –10y1 – 8y2 <  –4
  x1 + x2 + x3 – 5y1 – 8y3 <  –3

xj  > 0 for j = 1, 2, 3
0 < yj < 1 and integer for j = 1, 2, 3.

Defining the matrices used in model P,

† 

c1 = 8 6 -2[ ]
c2 = -42 -18 -33[ ]

A1 =
2 1 -1
1 1 1

È 

Î 
Í 

˘ 

˚ 
˙ 

A 2 =
-10 -8 0
-5 0 -8

È 

Î 
Í 

˘ 

˚ 
˙ 

b =
-4
-3

È 

Î 
Í 

˘ 

˚ 
˙ 

x =

x1

x2

x3

È 

Î 

Í 
Í 
Í 

˘ 

˚ 

˙ 
˙ 
˙ 

,y =

y1

y2

y3

È 

Î 

Í 
Í 
Í 

˘ 

˚ 

˙ 
˙ 
˙ 

Model D1 has two variables

u = [u1, u2 ].

The objective coefficients of D1 are

† 

b - A 2y =
-4 +10y1 + 8y2 + 0y3

-3 + 5y1 + 0y2 + 8y3

È 

Î 
Í 

˘ 

˚ 
˙ 

The objective function of D1  is then

w0(y) = Min u1[ –4 +10y1 +8y2 ]  + u2[ –3 + 5y1 + 8y3].

The constraints of model D1 are

(1) 2u1+ u2 > 8



7

(2)  u1+ u2 > 6
(3) –u1+ u2 > –2
(4) u1+ u2 < 9999

u1 > 0, u2 > 0.

Constraint (4) is added to assure that the solution is bounded.
The constraints of the integer program are formed from solutions of D1.  The

general form of the constraint is

Z  < c2y + uk (b – A2y),
Z  < (c2 – uk A2) y  + uk b
(-c2 + uk A2) y + Z < uk b

where uk is a solution to D1.  Substituting the appropriate vectors and matrices we obtain

Z < –42y1 –18y2 –33y3 +u1[ –4 +10y1 +8y2  ]  + u2[ –3 + 5y1 + 8y3].

Combining terms and moving the variable terms to the left we have

y1(42 – 10u1 – 5u2 ) +y2(18 –8u1 ) +y3(33 – 8u2) + Z  <  –4u1–3u2.

Note that u1 and u2 are known for specific solutions of D1. The figure shows the feasible
region of D1.
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The feasible region for D1 in the example problem.
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Solution of Example Problem

Description  Computation
––––––––––––––––––––––––– ––––––––––––––––––––––––––––––
Step 0:  Solve D1  with 0 objective Linear Programming Solution
coefficients. Variable w0 u1 u2

Value 0 4 2
––––––––––––––––––––––––

Form an integer constraint with New Integer Constraint
u = (4, 2). –8y1 –14y2 +17y3  +Z < –22

Step 1:  Solve P1 with one constraint. Integer Programming Solution    __
Variable Z y1 y2 y3
Value 0 1 1 0
––––––––––––––––––––––––––––

Step 2:  Find new objective for D1 Objective Function for D1
with y = (1, 1, 0). w0 = +14u1 + 2u2

Solve D1 . Linear Programming Solution    
Variable w0 u1 u2
Value 16 0 8
––––––––––––––––––––––––

Step 3: Test for Optimality Current Bounds
Lower:  –44
Upper:  –0
–––––––––––––

Form new integer constraint with New Integer Constraint
u = (0, 8). 2y1 +18y2 –31y3  +Z < –24

Step 1:  Solve P2 with two constraints. Integer Programming Solution    ______
Variable Z y1 y2 y3
Value –17 1 1 1
–––––––––––––––––––––––––––––––

Step 2:  Find new objective for D1 Objective Function for D1
with y = (1, 1, 1). w0 = +14u1 +10u2
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Solve D1 . Linear Programming Solution    
Variable w0 u1 u2
Value 68 2 4
––––––––––––––––––––––––

Step 3: Test for Optimality Current Bounds
Lower:  –25
Upper:  –17
–––––––––––––

Form new integer constraint with New Integer Constraint
u = (2, 4). 2y1 +2y2 + y3  +Z < –20

Step 1:Solve P3with three constraints. Integer Programming Solution    ______
Variable Z y1 y2 y3
Value –24 0 0 0
–––––––––––––––––––––––––––––––

Step 2:  Find new objective for D1 Objective Function for D1
with y = (0, 0, 0). w0 =  –4u1 –3u2

Solve D1 .  This solution hits the Linear Programming Solution          ____
constraint limiting an unbounded Variable w0 u1 u2
solution.  Model PX has no feasible Value –34997.5 5000.5 4998.5
solution with y = (0, 0, 0) –––––––––––––––––––––––––––––––

Step 3: Test for Optimality Current Bounds
Lower:  –25
Upper:  –24
–––––––––––––

Form new integer constraint with New Integer Constraint
u = (5000.5, 4998.5). –74955.5y1 –39986y2 –3995517y3+Z

< –34997.5

Step 1:  Solve P4 with four constraints. Integer Programming Solution    ______
Variable Z y1 y2 y3
Value –25 1 1 1
–––––––––––––––––––––––––––––––
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Step 2:  Find new objective for D1 Objective Function for D1
with y = (1, 1, 1). w0 = 14u1 +10u2

Solve D1 . Linear Programming Solution    
Variable w0 u1 u2
Value 68 2 4

––––––––––––––––––––––––

Step 3: Test for Optimality Current Bounds
The optimal solution has been found. Lower:  –25

Upper:  –25
–––––––––––––

Optimal integer solution. Integer  Solution    ________________
Variable Z y1 y2 y3
Value –25 1 1 1
–––––––––––––––––––––––––––––––

The optimum real solution comes Real Solution    ___________________
from the dual variables of D1. Variable x1 x2 x3

Value 4 6 0
–––––––––––––––––––––––––––––––
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