Benders' Method

Paul A Jensen

The mixed integer programming model has some variables, \mathbf{x}, identified as real variables and some variables, \mathbf{y}, identified as integer variables. Except for the integrality requirements on \mathbf{y}, the model has the linear programming format.

Model \boldsymbol{P} : The original model.

$$
\begin{aligned}
Z^{*}= & \operatorname{Max} \quad \mathbf{c}_{1} \mathbf{x} \quad+\mathbf{c}_{2} \mathbf{y} \\
& \text { Subject to: } \\
& \mathbf{A}_{\mathbf{1}}^{\mathbf{x}} \quad+\mathbf{A}_{\mathbf{2}} \mathbf{y} \leq \mathbf{b} \\
& \mathbf{x} \geq \mathbf{0}, \quad \mathbf{y} \geq \mathbf{0} \text { and integer. }
\end{aligned}
$$

In the following we will obtain several related formulations and each will be given a letter designation. We call the original model \boldsymbol{P}. The various vectors and matrices shown in the formulation have size and orientation appropriate to the vectors \mathbf{x}, \mathbf{y}, and \mathbf{b}.

Benders' method decomposes this model in such a way that it can be solved as an alternating sequence of linear programs and pure integer programs. Fig. 12 shows a schematic representation of the theoretical development that leads to the decomposition. Starting from \boldsymbol{P}, the first step to the right assumes that the integer vector \mathbf{y} is fixed to some specific value to obtain model $\boldsymbol{P} \boldsymbol{X}$. The terms representing \mathbf{y} now contribute constants to the objective function and constraints. We have moved the constants to the right side of the constraints and leave the constant term in the objective function. Model $\boldsymbol{P} \boldsymbol{X}$ is a linear programming model. For the moment assume that it has a feasible solution. The value of the objective function at optimality, $v^{0}(\mathbf{y})$, is shown as a function of \mathbf{y} because it will assume different values for different \mathbf{y}. It must be a lower bound on the optimal objective function of \boldsymbol{P} since it represents a feasible solution for some given value of \mathbf{y}. Thus

$$
\begin{equation*}
v^{0}(\mathbf{y}) \leq Z^{*} \quad \text { for any given } \mathbf{y} . \tag{1}
\end{equation*}
$$

Since $\boldsymbol{P} \boldsymbol{X}$ is a linear program, we can take its dual to obtain model $\boldsymbol{D} \boldsymbol{1}$. The constant term of the objective of $\boldsymbol{P} \boldsymbol{X}$ has been temporarily dropped to obtain the dual. It is important to note that the objective coefficients of $\boldsymbol{D 1}$ depend on \mathbf{y} while the constraints do not. Thus, the feasible region of $\boldsymbol{D} \mathbf{1}$ is independent of \mathbf{y}. The optimal solution to the dual has the same value as the optimal solution to the primal, so

$$
\begin{equation*}
w^{0}(\mathbf{y})+\mathbf{c}_{2} \mathbf{y}=v^{0}(\mathbf{y}) . \tag{2}
\end{equation*}
$$

A different way to write $\boldsymbol{D} \mathbf{1}$ is shown as $\boldsymbol{D} \mathbf{2}$. The latter statement follows from the fact that an optimum solution to $\boldsymbol{D 1}$ must be at one of the extreme points of its feasible region. Although $\boldsymbol{D} \mathbf{2}$ suggests a search over all the feasible extreme points in the set \boldsymbol{U} to solve the linear program, this obviously inefficient procedure will not be adopted. Model $\boldsymbol{D} 2$ is an intermediate formulation in the development.

$>$

```
\(\boldsymbol{P}^{*}\) : Let \(\mathbf{y}\) be variable.
Solve \(\boldsymbol{P}\) by enumerating over \(\mathbf{y}\) and
the extreme points of \(\boldsymbol{D} 1\).
A finite enumeration.
\(Z^{*}=\operatorname{Max}\left\{\mathbf{c}_{2} \mathbf{y}+\operatorname{Min} \mathbf{u}_{k}\left(\mathbf{b}-\mathbf{A}_{2} \mathbf{y}\right)\right\}\)
    y
    \(\mathbf{u}_{k}\)
\(\mathbf{y} \geq 0\) and integer and \(\mathbf{u}_{k}\) e \(\boldsymbol{U}\)
```

$\boldsymbol{P X}$: Let \mathbf{y} be fixed.
A linear program in \mathbf{x}.
$v^{0}(\mathbf{y})=\operatorname{Max} \mathbf{c}_{1} \mathbf{x}+\mathbf{c}_{2} \mathbf{y}$
Subject to:
Subject to:

$$
\begin{aligned}
& \mathbf{A}_{\mathbf{1}} \mathbf{x} \leq \mathbf{b}-\mathbf{A}_{\mathbf{2}} \mathbf{y} \\
& \mathbf{x} \geq \mathbf{0}
\end{aligned}
$$

D1: Take the dual of $\boldsymbol{P} \boldsymbol{X}$.
A linear program in \mathbf{u}.
$w^{0}(\mathbf{y})=\operatorname{Min} \mathbf{u}\left(\mathbf{b}-\mathbf{A}_{\mathbf{2}} \mathbf{y}\right)$
Subject to:

$$
\begin{aligned}
& \mathbf{u} \mathbf{A}_{1} \geq \mathbf{c}_{1} \\
& \mathbf{u} \geq \mathbf{0}
\end{aligned}
$$

fl
D2: Solve D1 by enumerating the extreme points.
A finite enumeration of \boldsymbol{U}.
$w^{0}(\mathbf{y})=\operatorname{Min} \mathbf{u}_{k}\left(\mathbf{b}-\mathbf{A}_{\mathbf{2}} \mathbf{y}\right)$
for \mathbf{u}_{k} e \boldsymbol{U}
(Set of extreme points of D1)
fl

> P1: Solve $\boldsymbol{P} \boldsymbol{X}$ by enumerating the extreme points of $\boldsymbol{D 1}$. A finite enumeration of \boldsymbol{U}. $\begin{aligned} & v^{0}(\mathbf{y})=\mathbf{c}_{2} \mathbf{y}+w^{0}(\mathbf{y}) \\ & =\mathbf{c}_{\mathbf{2}} \mathbf{y}+\operatorname{Min} \mathbf{u}_{k}\left(\mathbf{b}-\mathbf{A}_{\mathbf{2}} \mathbf{y}\right) \\ & \quad \text { for } \mathbf{u}_{k} \text { e } \boldsymbol{U}\end{aligned}$

A schematic showing the theoretical development of Benders' Method.

Replacing $w^{0}(\mathbf{y})$ by its equivalent in Eq. (2), results in model $\boldsymbol{P 1}$.

$$
\begin{equation*}
v^{0}(\mathbf{y})=\mathbf{c}_{2} \mathbf{y}+\underset{u_{k} \mathrm{e} \boldsymbol{U}}{\operatorname{Min}}\left\{u_{k}\left(\mathbf{b}-\mathbf{A}_{\mathbf{2}} \mathbf{y}\right)\right\} \tag{3}
\end{equation*}
$$

In \boldsymbol{P}^{*} we again let \mathbf{y} be variable. The optimum \mathbf{y} is found by minimizing $v^{0}(\mathbf{y})$ over all alternative \mathbf{y}. \boldsymbol{P}^{*} is equivalent to the original \boldsymbol{P}. To remove the minimization from the objective function, we use a standard trick of mathematical programming to obtain the equivalent model $\boldsymbol{P} \boldsymbol{K}$. In this model there are all integer variables \mathbf{y} with one real variable Z. Here K is the number of extreme points of $\boldsymbol{D} \mathbf{2}$, and there is a constraint for each extreme point. The goal is to maximize Z. Model $\boldsymbol{P} \boldsymbol{K}$ completes the development because it is equivalent to the original model \boldsymbol{P}. Although the new model cannot be practically solved because its formulation requires that all extreme points of $\boldsymbol{D} 1$ be identified, it does provide the basis for the iterative algorithm that follows.

Model D1 is an important component of the algorithm so it is necessary to discuss conditions under which this model might have no feasible solution or might have an unbounded solution. From duality theory, we know that if $\boldsymbol{D} \mathbf{1}$ has no feasible solution, its dual, model $\boldsymbol{P} \boldsymbol{X}$, must either have no feasible solution or must also be unbounded. The feasible region of $\boldsymbol{D} \mathbf{1}$ does not depend on \mathbf{y}. When no feasible solution exists for $\boldsymbol{D} \mathbf{1}$, then $\boldsymbol{P} \boldsymbol{X}$ must be either infeasible or unbounded for all \mathbf{y}. This case is not interesting for practical problems, so we assume that $\boldsymbol{D} \mathbf{1}$ has feasible solutions.

When model $\boldsymbol{D} 1$ has an unbounded solution for some \mathbf{y}, model $\boldsymbol{P} \boldsymbol{X}$ is infeasible for that \mathbf{y}. This possibility occurs frequently in practical problems and must be accommodated in the algorithm. Here we adopt a simple solution that may result in numerical difficulties when solving large problems. We add the following constraint to D1 that assures a bounded solution.

$$
\begin{equation*}
u_{1}+u_{2}+\ldots+u_{m} \leq M, \tag{4}
\end{equation*}
$$

where M is a large positive number. This is equivalent to adding an artificial variable to $\boldsymbol{P} \boldsymbol{X}$ that assures feasibility.

Bounds on the Optimal Objective

As will be described in the next section, we will solve a relaxation of $\boldsymbol{P} \boldsymbol{K}$ that includes only a subset of its constraints. Let a subset of the extreme points \boldsymbol{U} be the set

$$
\boldsymbol{U}^{r}=\left\{u_{1}, u_{2}, \ldots, u_{r}\right\} .
$$

Define the model $\boldsymbol{P} \boldsymbol{r}$ as
Model $\boldsymbol{P} \boldsymbol{r}$:

\[

\]

When $r<K$, this is a relaxation of $\boldsymbol{P} \boldsymbol{K}$, so the value of Z^{r} is an upper bound on the optimal solution.

$$
\begin{equation*}
Z^{r} \geq Z^{*} \tag{5}
\end{equation*}
$$

Combining Eq. (1) and Eq. (2), the solution to $\boldsymbol{D} \mathbf{1}$ for any given \mathbf{y} will provide a lower bound to the optimal objective value

$$
\begin{equation*}
v^{0}(\mathbf{y})=w^{0}(\mathbf{y})+\mathbf{c}_{\mathbf{2}} \mathbf{y} \leq Z^{*} \quad \text { for any given } \mathbf{y} . \tag{6}
\end{equation*}
$$

Thus we have procedures for finding both lower and upper bounds on the optimal objective value.

Benders' Algorithm

Benders' algorithm involves sequentially solving the linear program $\boldsymbol{D} \mathbf{1}$ for specific values of \mathbf{y}, and solving the integer program $\boldsymbol{P} \boldsymbol{r}$ for increasing values of r. At each iteration, lower and upper bounds are computed. When the bounds become equal, the algorithm terminates with the optimal solution. The hope is that termination will come when r is considerably less than K. Finite termination is assured because model $\boldsymbol{D} \mathbf{1}$ must have a finite number of extreme points.

Step 0 Initialization : Set the objective coefficients of D1 to zero and solve. If no feasible solution exists, stop, because either \boldsymbol{P} has no feasible solution or is unbounded for all \mathbf{y}. If $\boldsymbol{D} \boldsymbol{1}$ has an optimum, let \mathbf{u}_{1} be the optimal solution. Using \mathbf{u}_{1} form the constraint

$$
\begin{equation*}
Z \leq \mathbf{c}_{2} \mathbf{y}+\mathbf{u}_{1}\left(\mathbf{b}-\mathbf{A}_{2} \mathbf{y}\right) \tag{7}
\end{equation*}
$$

Let $Z_{L}=-\bullet$.
Let $r=1$.

Step 1 Solve the Integer Program: Solve problem $\boldsymbol{P}^{\boldsymbol{r}}$ to find the optimum solution \mathbf{y}^{r} with objective value Z^{r}.
Compute the upper bound to the optimum solution of \boldsymbol{P}.

$$
\begin{equation*}
Z_{U}=Z^{r} \tag{8}
\end{equation*}
$$

Step 2 Solve the Linear Program : Let $\mathbf{y}=\mathbf{y}^{r}$, compute the new objective function for the linear program D1,

$$
\begin{equation*}
w^{0}\left(\mathbf{y}^{r}\right)=\operatorname{Min} \mathbf{u}\left(\mathbf{b}-\mathbf{A}_{\mathbf{2}} \mathbf{y}^{r}\right) \tag{9}
\end{equation*}
$$

and solve. Let \mathbf{u}_{r+1} be the optimal solution with objective value

$$
\begin{equation*}
w^{0}\left(\mathbf{y}^{r}\right)=\mathbf{u}_{r+1}\left(\mathbf{b}-\mathbf{A}_{\mathbf{2}} \mathbf{y}^{r}\right) \tag{10}
\end{equation*}
$$

Compute

$$
\begin{gather*}
v^{0}\left(\mathbf{y}^{r}\right)=\mathbf{c}_{\mathbf{2}} \mathbf{y}^{r}+w^{0}\left(\mathbf{y}^{r}\right) \tag{11}\\
\text { If } v v_{\left(\mathbf{y}^{r}\right)>Z_{L}}
\end{gather*}
$$

then replace the lower bound.

$$
\begin{gathered}
Z_{L}=v^{0}\left(\mathbf{y}^{r}\right) \\
\text { If } v^{0}\left(\mathbf{y}^{r}\right) \leq Z_{L}
\end{gathered}
$$

do not replace the lower bound.
Step 3 Test for Optimality

$$
\text { If } Z_{L}<Z_{U}
$$

the solution is not optimal, so form a new constraint for the integer program.

$$
\begin{equation*}
Z \leq \mathbf{c}_{2} \mathbf{y}+\mathbf{u}_{r+1}\left(\mathbf{b}-\mathbf{A}_{2} \mathbf{y}\right) \tag{12}
\end{equation*}
$$

Replace r by $r+1$ and return to step 1 .
If

$$
Z_{L}=Z_{U},
$$

the solution is optimum, so proceed to step 4.
Step 4 Termination: The optimum solution is \mathbf{y}^{r}. The optimum \mathbf{x} is the dual of the optimum solution of problem $\boldsymbol{D 1}$ solved with \mathbf{y}^{r}.

Example Problem

Consider the following mixed integer program with three $0-1$ integer and three real variables.

\[

\]

Defining the matrices used in model \boldsymbol{P}, $\mathbf{c}_{1}=\left[\begin{array}{lll}8 & 6 & \square 2\end{array}\right]$
$\mathbf{c}_{2}=\left[\begin{array}{lll}\square 42 & \square 18 & \square 33\end{array}\right]$

$\mathbf{A}_{2}=\stackrel{\square}{\square 10} \begin{array}{ccc}\square \square & \square 8 & 0 \square \\ \square \square & 0 & \square 8 \square\end{array}$
$\mathbf{b}=\frac{\square 4 \square}{\square \square}$

Model D1 has two variables

$$
\mathbf{u}=\quad\left[u_{1}, u_{2}\right] .
$$

The objective coefficients of D1 are

$$
\mathbf{b} \square \mathbf{A}_{2} y=\begin{aligned}
& \square 4+10 y_{1}+8 y_{2}+0 y_{3}[\\
& \square \square \\
& \square
\end{aligned}+5 y_{1}+0 y_{2}+8 y_{3}[
$$

The objective function of $\boldsymbol{D} \mathbf{1}$ is then

$$
w^{0}(\mathbf{y})=\operatorname{Min} u_{1}\left[-4+10 y_{1}+8 y_{2}\right]+u_{2}\left[-3+5 y_{1}+8 y_{3}\right] .
$$

The constraints of model $\boldsymbol{D} \mathbf{1}$ are

$$
\begin{equation*}
2 u_{1}+u_{2} \geq 8 \tag{1}
\end{equation*}
$$

(2)

$$
\begin{aligned}
& u_{1}+u_{2} \geq 6 \\
&-u_{1}+u_{2} \geq-2 \\
& u_{1}+u_{2} \leq 9999 \\
& u_{1} \geq 0, u_{2} \geq 0
\end{aligned}
$$

Constraint (4) is added to assure that the solution is bounded.
The constraints of the integer program are formed from solutions of $\boldsymbol{D 1}$. The general form of the constraint is

$$
\begin{gathered}
Z \leq \mathbf{c}_{2} \mathbf{y}+\mathbf{u}_{k}\left(\mathbf{b}-\mathbf{A}_{2} \mathbf{y}\right) \\
Z \leq\left(\mathbf{c}_{2}-\mathbf{u}_{k} \mathbf{A}_{2}\right) \mathbf{y}+\mathbf{u}_{k} \mathbf{b} \\
\left(-\mathbf{c}_{2}+\mathbf{u}_{k} \mathbf{A}_{2}\right) \mathbf{y}+Z \leq \mathbf{u}_{k} \mathbf{b}
\end{gathered}
$$

where \mathbf{u}_{k} is a solution to \boldsymbol{D} 1. Substituting the appropriate vectors and matrices we obtain

$$
Z \leq-42 y_{1}-18 y_{2}-33 y_{3}+u_{1}\left[-4+10 y_{1}+8 y_{2} \quad\right]+u_{2}\left[-3+5 y_{1}+8 y_{3}\right] .
$$

Combining terms and moving the variable terms to the left we have

$$
y_{1}\left(42-10 u_{1}-5 u_{2}\right)+y_{2}\left(18-8 u_{1}\right)+y_{3}\left(33-8 u_{2}\right)+Z \leq-4 u_{1}-3 u_{2} .
$$

Note that u_{1} and u_{2} are known for specific solutions of $\boldsymbol{D} 1$. The figure shows the feasible region of $\boldsymbol{D 1}$.

The feasible region for $\boldsymbol{D} \mathbf{1}$ in the example problem.

Solution of Example Problem

Description

Step 0: Solve D1 with 0 objective coefficients.

Form an integer constraint with $\mathbf{u}=(4,2)$.

Step 1: Solve \boldsymbol{P}^{1} with one constraint.

Step 2: Find new objective for $\boldsymbol{D} \mathbf{1}$ with $\mathbf{y}=(1,1,0)$.

Solve D1 .

Step 3: Test for Optimality

Form new integer constraint with $\mathbf{u}=(0,8)$.

Step 1: Solve $\boldsymbol{P}^{\mathbf{2}}$ with two constraints.

Step 2: Find new objective for $\boldsymbol{D} \mathbf{1}$ with $\mathbf{y}=(1,1,1)$.

Computation

Linear Programming Solution				
Variable	w^{0}	u_{1}	u_{2}	
Value	0	4	2	

New Integer Constraint
$-8 y_{1}-14 y_{2}+17 y_{3}+Z \leq-22$

Integer Programming Solution				
Variable	Z	y_{1}	y_{2}	y_{3}
Value	0	1	1	0

Objective Function for D1
$w^{0}=+14 u_{1}+2 u_{2}$
Linear Programming Solution
Variable $\quad w^{0} \quad u_{1} \quad u_{2}$
$\begin{array}{llll}\text { Value } & 16 & 0 & 8\end{array}$
Current Bounds
Lower: -44
Upper: $\quad-0$

New Integer Constraint

$$
2 y_{1}+18 y_{2}-31 y_{3}+Z \quad \leq-24
$$

Integer Programming Solution

Variable	Z	y_{1}	y_{2}	y_{3}

| Value | -17 | 1 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- |

Objective Function for D1 $w^{0}=+14 u_{1}+10 u_{2}$

Linear Programming Solution

Variable	w^{0}	u_{1}	u_{2}
Value	68	2	4

Step 3: Test for Optimality

Form new integer constraint with $\mathbf{u}=(2,4)$.

Step 1:Solve $\boldsymbol{P}^{\mathbf{3}}$ with three constraints.

Step 2: Find new objective for $\boldsymbol{D} \mathbf{1}$ with $\mathbf{y}=(0,0,0)$.

Solve D1. This solution hits the constraint limiting an unbounded solution. Model $\boldsymbol{P X}$ has no feasible solution with $\mathbf{y}=(0,0,0)$

Step 3: Test for Optimality

Form new integer constraint with $\mathbf{u}=(5000.5,4998.5)$.

Step 1: Solve $\boldsymbol{P}^{\boldsymbol{4}}$ with four constraints.

Current Bounds
Lower: -25
Upper: -17

New Integer Constraint
$2 y_{1}+2 y_{2}+y_{3}+Z \quad \leq-20$

Integer Programming Solution

Variable	Z	y_{1}	y_{2}	y_{3}
Value	-24	0	0	0

Objective Function for D1
$w^{0}=-4 u_{1} \quad-3 u_{2}$

Linear Programming Solution
Variable $w^{0} \quad u_{1} \quad u_{2}$
$\begin{array}{llll}\text { Value } & -34997.5 & 5000.5 & 4998.5\end{array}$

Current Bounds
Lower: - 25
Upper: -24

New Integer Constraint
$-74955.5 y_{1}-39986 y_{2}-3995517 y_{3}+Z$
≤-34997.5

Integer Programming Solution

Variable	Z	y_{1}	y_{2}	y_{3}
Value	-25	1	1	1

Step 2: Find new objective for $\boldsymbol{D} \mathbf{1}$ with $\mathbf{y}=(1,1,1)$.

Solve D1.

Step 3: Test for Optimality
The optimal solution has been found.

Optimal integer solution.

The optimum real solution comes from the dual variables of $\boldsymbol{D} 1$.

Objective Function for D1
$w^{0}=14 u_{1}+10 u_{2}$
Linear Programming Solution

Variable	w^{0}	u_{1}	u_{2}
Value	68	2	4

Current Bounds
Lower: -25
Upper: -25

Integer Solution				
Variable	Z	y_{1}	y_{2}	y_{3}
Value	-25	1	1	1

Real Solution			
Variable	x_{1}	x_{2}	x_{3}
Value	4	6	0

References

Benders, J., "Partitioning Procedures for Solving Mixed Variables Programming Problems", Numerische Mathematic, 4, 238 - 252, 1962.

Lasdon, L., Optimization Theory for Large Systems, MacMillan (1970).
Salkin, H. M., Integer Programming, Chapter 8, Addison - Wesley (1975)

