
Operations Research Models and Methods
Paul A. Jensen and Jonathan F. Bard

Dynamic Programming Methods.S1
Forward Recursion
Instead of starting at a final state and working backwards, for many problems it is
possible to determine the optimum by an opposite procedure called forward recursion.
Backward recovery is then used to identify the optimal path. The procedure may be more
convenient for some classes of problems, but for those in which the final state set is
unknown, it is the only feasible approach. Forward recursion also leads to a very
powerful procedure called reaching, described in the next section.

Backward Decision Set, Transition Function and Decision Objective

The backward decision set is denoted for each state by Db(s) with the
subscript “b” being used to distinguish it from the comparable set D(s)
previously defined for backward recursion. Db(s) is the set of decisions

that can be used to enter state s. For the simple rotated path problem
depicted in Fig. 3, Db(s) = {–1, +1}, where d = –1 implies entering s from

above and d = +1 implies entering s from below. Note that the elements
of D(s) and Db(s) are the same for this path problem but their meaning is

quite different; D(s) is the set of decisions that lead out of state s and Db(s)

is the set of decisions that lead in.

The backward transition function is defined as

sb = Tb(s, d), where d ∈ Db(s).

The function Tb determines the state that came before s when the decision

made to reach state s is d. We use sb to denote the previous state. Very
often the backward transition function can be obtained directly from the
forward transition function. For some problems, the forward transition
equation s' = T(s, d) can be solved for s in terms of s' and d. Substituting
first sb for s and then s for s', one obtains the backward transition function.

For instance, the rotated path problem has the forward transition function
components

s '
1 = s1 + 1 and s '

2 = s2 + d.

Solving these equations for s in terms of s' yields

s1 = s '
1 – 1 and s2 = s '

2 – d.

Substituting first sb for s and then s for s', we obtain

Forward Recursion 2

sb1 = s1 – 1 and sb2 = s2 – d.

These equations give the backward transition function for the rotated path
problem.

For a given definition of the state variables, it is not always true
that there exists both forward and backward transition functions for a
particular problem. For instance, consider the path problem with turn
penalties (Section 12.5). The components of its forward transition
function are

s '
1 = s1 + 1, s '

2 = s2 + d, s '
3 = d.

Thus it is not possible to solve for s3 in terms of s' and d, because s3 does

not appear in these equations. A little reflection will show that it is
impossible to know what the previous state was (in terms of the third state
variable) given the current state and the decision made to reach it.
Defining the set of state variables differently, though, will provide both
forward and backward transition functions. For the turn penalty problem,
the first two state variables remain unchanged, but the third state variable
sb3 should be defined as the direction to be traveled rather than the

direction last traveled.

The backward decision objective, zb(sb, d, s) is the immediate cost

of decision d when it leads to state s from state sb. For most problems of

interest, zb is a simple function of sb and d.

Forward Recursive Equation

The forward recursive equation is written

fb(s) = Minimize{Rb(s, d) : d ∈ Db(s)} (4)

where Rb(s, d) = zb(d, s) + fb(sb)

and sb = Tb(s, d).

The factors in these relationships have analogous definitions to their
counterparts in the backward recursive equation. In particular, fb(s) is the

cost of the optimal path arriving at s from an initial state as a consequence
of decision d. Sometimes it is convenient to express the decision return as
an explicit function of sb. In that case we use the notation zb(sb, d, s).

The first step in solving (4) is to assign values to the initial states
(those with no predecessors). This is equivalent to specifying the

Forward Recursion 3

boundary conditions. Then the equation can be solved for each state that
is an immediate successor of the initial states. The procedure continues in
the forward direction until all states have been considered. The policy
function d*(s) now holds the information on the optimal decision entering
each state s ∈ S.

The optimum is identified by a backward recovery procedure.
Starting at the final state associated with the minimum cost, the policy
function identifies the optimal decision that led to that state. The
backward transition function then identifies the predecessor state in the
optimal path. The policy function, in turn, identifies the optimal decision
entering that state. The process continues sequentially using the optimal
policy function and the backward transition function until an initial state is
encountered. At this point the optimal path to the specified final state
from an initial state has been found. Note that the forward recursion
procedure implicitly discovers the optimal path to every state from an
initial state.

Example 2

For the rotated path problem described in the previous section, Table 5
provides the additional definitions associated with forward recursion.

Table 5. Forward recursion model for rotated path problem

Component Description

Backward decision set Db(s) = {+1, –1}

Backward transition function sb = Tb(d, s)

sb1 = s1 – 1 and sb2 = s2 – d

Backward decision objective zb(s, d) = a(s, d), where a(s, d) is the length of the arc

entering s from decision d, taken from Fig. 3.

Initial value function f(s) = 0 for s ∈ I

Forward recursive equation fb(s) = Minimize{zb(s, d) + fb(sb) : d ∈ Db(s)}

The calculations are shown in Table 6. Note that this table is constructed
by listing the states in the order in which they must be considered for
forward recursion, that is, in lexicographic order. All the calculations

Forward Recursion 4

required to obtain fb(s) and d*(s), the optimal path value and the optimum

policy, respectively, are included.

To better understand how the calculations are performed, assume
that we are at s = (3, 1) which is node 8 in Fig. 3. The decision set
Db((3, 1)) = {1, –1} and the backward transition function for each of the

two state components is sb1 = s1 – 1 and sb2 = s2 – d. To solve the

recursive equation (4) if is first necessary to evaluate the return function
for all d ∈ Db((3, 1)). The two cases are as follows.

d = 1 ⇒ sb = (2, 0) and

Rb((3, 1), 1) = a((2, 0), 1) + f((2, 0)) = 3 + 11 = 14

d = –1 ⇒ sb = (2, 2) and

Rb ((3, 1), –1) = a((2, 2), –1) + f((2, 2)) = 2 + 13 = 15

Combining these results leads to

f((3, 1)) = Minimize

Rb((3, 1), 1) = 14

Rb((3, 1), – 1) = 15
 = 14

so the optimal decision d*((3, 1)) = (1) which means it is best to reach
(3, 1) from (2, 0). Figure 5 depicts the optimal policy for each state, which
is the arc that should be traversed to enter that state. By implication, an
optimal path is available for every state from the initial state.

Forward Recursion 5

Table 6. Forward recursion results for the rotated path problem

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Index s d sb zb fb(sb) Rb(s, d) fb(s) d*(s)

1 (0, 0) –– 0 ∞

2 (1, –1) –1 (0, 0) 5 0 5 5 –1

3 (1, 1) 1 (0, 0) 8 0 8 8 1

4 (2, –2) –1 (1, –1) 4 5 9 9 –1

5 (2, 0) 1 (1, –1) 7 5 12

–1 (1, 1) 3 8 11 11 –1

6 (2, 2) 1 (1, 1) 5 8 13 13 1

7 (3, –1) 1 (2, –2) 9 9 18

–1 (2, 0) 5 11 16 16 –1

8 (3, 1) 1 (2, 0) 3 11 14 14 1

–1 (2, 2) 2 13 15

9 (4, 0) 1 (3, –1) 6 16 22 22 1

–1 (3, 1) 9 14 23

1

4

72

5

83

6

90

1

2

0 1 2

-1

-2

3 4 x1

2x

(8)

(5)

(5) (5)

(3) (3)

(6)

(9)

(9)

(7)

(2)

(4)

Figure 5. Optimal policy using forward recursion

Forward Recursion 6

The length of the optimal path is the last entry in column (8) of
Table 6; in particular, fb((4, 0)) = 22. The optimal solution is identified by

using a backward recovery algorithm. The procedure starts at the final
state and follows the optimal policy backward until an initial state is
encountered. The computations are given in Table 7. The last column
lists the cumulative path length, confirming once again that when we
arrive at the initial state, z(P*) = 22.

Table 7. Backward recovery

s d*(s) sb z(P*)

(4, 0) 1 (3, –1) ––

(3, –1) –1 (2, 0) 6

(2, 0) –1 (1, 1) 11

(1, 1) 1 (0, 0) 14

(0, 0) –– –– 22

