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Reaching
Backward and forward recursion are known as pulling methods because the optimal
decision policy d*(s) tells us how to pull ourselves into a particular state from a
predecessor state.  Reaching is an alternative solution technique that combines the
forward generation of states with forward recursion on an acyclic network.  In effect, the
optimal decision policy is derived while the state space is being generated, a concurrent
operation.  When all the states have been generated, the optimization is complete.  The
solution is found with the backward recovery procedure.

Reaching can be extremely efficient especially when paired with bounding
techniques as discussed presently; however, it may not be appropriate for all problems.
The principal requirement is the availability of both forward and backward transition
functions and the forward recursive equation.  At the end of the section, several situations
are identified in which reaching outperforms both backward and forward recursion.

Development

The forward recursive equation (4) can be written as

fb(s) = Minimize{zb(sb, d, s) + fb(sb) : d ∈ Db(s), sb =Tb(s, d)} (5)

In this section we write the decision objective explicitly in terms of the
previous state, sb, and the current state, s.  A few substitutions result in a

more convenient form for the computational procedure outlined below.
Note that

zb(sb, d, s) = z(sb, d, s)

and that sb = Tb(s, d),  s = T(sb, d).

Using these relationships, we write (5) alternatively as

fb(s) = Minimize{z(sb, d, s) + fb(sb) : d ∈ D(sb), s = T( sb, d)} (6)

where the minimum is take over all states sb and decisions d at sb that lead

to the given state s.

 The strategy behind reaching is to solve Eq. (6) while the states are
being generated in the forward direction.  Recall that the forward
generation procedure starts with the set of initial states I and the boundary
conditions fb(s) for all s ∈ I.  For any state s ∈ S and feasible decision d ∈
D(s), a new state s' is created by the transition function T(s, d). Restating
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(6) in these terms first requires the replacement of s by s', and then the
replacement of sb by s.  This yields

fb(s') = Minimize{z(s, d, s') + fb(s) : d ∈ D(s), s' = T(s, d)} (7)

Note that the minimum is taken over all s such that s' can be reached from
s when decision d ∈ D(s) is taken.

When a new state s' is first generated the temporary assignment

-
fb(s') = z(s, d, s') + fb(s)

is made.  This value is an upper bound on the actual value of fb(s') because

it is only one of perhaps many possible ways of entering s'.  As the
generation process continues a particular state s' may be reached through
other combinations of s and d.  Whenever a state that already exists is gen-
erated again, the current path value is checked against the cost of the new

path just found.  If the new path has a lower value,  
-
fb(s') and d*(s') are

replaced. That is, when

-
fb(s') > z(s, d, s') + fb(s)

for some s' = T(s, d), we replace 
-
fb(s') with z(s, d, s') + fb(s) and d*(s') with

d.

Reaching Algorithm

The generation process starts at the initial states in I and proceeds lexico-
graphically through the list of states already identified.  For algorithmic
purposes we will use the same symbol, S, used to denote the complete
state space, to represent this list.  When a particular state s ∈ S is selected

for forward generation, the true value of fb(s) must be the value of the

optimal path function as determined by (7).  This follows because all
possible paths that enter s must come from a state that is lexicographically
smaller than s.  When s is reached in the generation process, all immediate

predecessors of s must have been considered in the determination of 
-
fb(s')

so this must be the optimal value.

The algorithm below provides the details of the reaching
procedure.  As can be seen, it simultaneously generates and optimizes the
state space.
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Step 1. Start with a set of initial states I and store them as list in memory.
Call the list S.  Initialize fb(s) for all s ∈ I.  These values must be

given or implied in the problem definition.  Let s ∈ S be the

lexicographically smallest state available.

Step 2. Find the decision set D(s) associated with s.  Assume that there
are l feasible decisions and let

D(s) = {d1, d2, … , dl}.

Set k = 1.

Step 3. Let the decision d = dk and find the successor state s' to s using

the forward transition function:

s' = T(s, d).

If s is not feasible go to Step 4; otherwise, search the list S to
determine if s' has already been generated.

i. If not, put S ← S ∪ {s'}, d*(s') ← dk and compute the initial

estimate of the optimal path value for state s'.

-
fb(s') = z(s, d, s') + fb(s)

ii. If s' ∈ S indicating that the state already exists, whenever

-
fb(s') > z(s, d, s') + fb(s)

put 
-
fb(s') ← z(s, d, s') + fb(s) and d*(s') ← d and go to Step 4.

Step 4. Put k ← k + 1.  If k > l, put fb(s) ← 
-
fb(s) and go to Step 5 (all

feasible decisions have been considered at s so we can examine
the next state; also the optimal path to s is known).

If k ≤ l, go to Step 3.

Step 5. Find the next lexicographically larger state than s on the list S.
Rename this state s and go to Step 2.  If no state can be found go
to Step 6.

Step 6. Stop, the state space is complete and the optimal path has been
found from all initial states in I to all states in S.  Let F ⊂ S be the

set of final states.  Solve

fb(sF) = Minimize{fb(s) : s ∈ F}

to determine the optimal path value and the final state sF on the

optimal path.  Perform backward recovery to determine the
optimal sequence of states and decisions.
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Example 3

Consider again the path problem in Fig. 3.  Applying the reaching
algorithm to this problem gives the results shown in Table 8. We have
rearranged and renamed some of the columns to better reflect the order of
the process.

Table 8.  Reaching solution for rotated path problem

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Index s fb(s) d z s' R(s, d)
-
fb(s') d*(s')

1 (0, 0) 0 –1 5 (1, –1) 5 5 –1

+1 8 (1, 1) 8 8 +1

2 (1, –1) 5 –1 4 (2, –2) 9 9 –1

+1 7 (2, 0) 12 12 +1

3 (1, 1) 8 –1 3 (2, 0) 11 Min(12, 11) = 11 –1

+1 5 (2, 2) 13 13 +1

4 (2, –2) 9 +1 9 (3, –1) 18 18 +1

5 (2, 0) 11 –1 5 (3, –1) 16 Min(18, 16) = 16 –1

+1 3 (3, 1) 14 14 +1

6 (2, 2) 13 –1 2 (3, 1) 15 Min(15, 14) = 14 +1

7 (3, –1) 16 +1 6 (4, 0) 22 22 +1

8 (3, 1) 14 –1 9 (4, 0) 23 Min(22, 23) = 22 +1

9 (4, 0) 22 ---

We begin the process at the initial state s = (0, 0), with fb((0, 0)) =

0.  Two decisions are possible: d = –1 and d = 1.  The former leads to s' =
(1, –1) and the latter to s' = (1, 1).  Both of these states are added to the list

S and temporary values of 
-
fb(s') are computed:

-
fb((1, –1)) = a((0, 0), –1) + fb((0, 0)) = 5 + 0 = 5

-
fb((1, 1)) = a((0, 0), 1) + fb((0, 0)) = 8 + 0 = 8
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At iteration 2, we move to the next lexicographically larger state

on S which is s = (1, –1).  The value of fb((1, –1)) is fixed to 
-
fb((1, –1)) = 5

since the temporary value must be the solution of the forward recursive
equation.  The corresponding value of d*((1, –1)) is also fixed to its current
value. Once again, we consider the two possible decisions d = –1 and d =
1 and use the forward transition function to generate states s' = (2, –2) and

s' = (2, 0), respectively.  The corresponding values of  
-
fb(s') are

-
fb((2, –2)) = a((1, –1), –1) + fb((1, –1)) = 4 + 5 = 9

and

-
fb((2, 0)) = a((1, –1), 1) + fb((1, –1)) = 7 + 5 = 12.

This completes iteration 2 so we can fix 
-
fb((1, –1)) = 5 and

d*((1, –1)) = (–1).  The state list is S = {(0, 0), (1, –1), (1, 1), (2, –2), (2, 0)}
and we move to s = (1, 1), the next larger state as determined by the
lexicographical order.  Reaching out from (1, 1) with decisions d = 1 and d
= –1, respectively, leads to one new state s' = (2, 2) and one previously
encountered state s' = (2, 0).  For s' = (2, 2) we have

-
fb((2, 2)) = a((1, 1), 1) + fb((1, 1)) = 5 + 8 = 13

and for s' = (2, – 2) we have

-
fb((2, 0)) = a((1, 1), –1) + fb((1, 1)) = 3 + 8 = 11.

We show in the table that 
-
fb((2, 0)) is replaced by the minimum of its

previous value, 12, and the new value, 11.  The optimal decision is also
updated.  We continue in the same manner until the entire state space is
explored. The process only generates reachable states.

At the completion of iteration 8, the only remaining state is (4, 0)
which is in F.  One more iteration is required to verify that the termination
condition is met; that is, there are no more states to explore. We now go to
Step 6 and would ordinarily solve the indicated optimization problem to
determine the optimal path value and the final state sF on the optimal path.

This is not necessary, though, because F is single-valued, implying that sF

= (4, 0).  The optimal path is identified by backward recovery with the
help of d*(s), the optimal decision leading into each state s.  For the
example, backward recovery begins with the unique terminal state (4, 0).
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The optimal path is the same as the one identified by the forward recursion
procedure given in Table 7.

Reaching vs. Pulling

For the types dynamic programming models that we have addressed, it is
natural to ask which algorithmic approach will provide the best results.
To answer this question, consider again a finite acyclic network whose
node set consists of the integers 1 through n and whose arc set consist of
all pairs (i, j), where i and j are integers having 1 ≤ i < j ≤ n.  As before,

arcs point to higher-numbered nodes.  Let arc (i, j) have length aij, where −
∞ ≤ aij ≤ ∞.  If (i, j) cannot be traversed it is either omitted from the

network or assigned the length –∞ or +∞, depending on the direction of
optimization.

For a minimization problem the goal is to find the shortest path
from node 1 to node j, for j = 2, … , n, while for a maximization problem
the goal is to find the longest path to each node j.  To determine under
what circumstances the reaching method provides an advantage over the
pulling methods in Sections 13.3 and 13.4 for a minimization objective, let
fj be the length of the shortest path from node 1 to some node j.  By the

numbering convention, this path has some final arc (i, j) such that i < j.

Hence, with f1 = 0,

fj = min{fi + aij : i < j} j = 2, … , n (8)

Forward recursion computes the right-hand side of Eq. (8) in ascending  j,

and eventually finds the shortest path from node 1 to every other node.

The process is described in the following algorithm.

Pulling method (forward recursion):

1. Set v1 = 0 and vj = ∞ for j = 2, … , n.

2. DO for j = 2, … , n.

3. DO for i = 1, … , j – 1.

vj  ← min{vj, vi  + aij} (9)

To be precise, the expression  x ← y means that x is to assume the

value now taken by y.  Thus (9) replaces the label vj by vi + aij whenever

the latter is smaller.  A “DO” statement means that the subsequent
instructions in the algorithm are to be executed for the specific sequence
of index values.  Step 2 says that Step 3 is to be executed n – 1 times, first
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with  j = 2, then with j = 3, and so on.  At the completion of Step 3 for
each j, we have fj = vj.

Alternatively, we can solve Eq. (8) by reaching out from a node i
to update the labels vj for all j > i.  Again, the algorithm finds the shortest

path from node 1 to every other node as follows.

Reaching method:

1. Set v1 = 0 and vj = ∞ for j = 2, … , n.

2. DO for i = 1, … , n – 1.

3. DO for j = i + 1, … , n.

vj  ← min{vj, vi  + aij} (10)

Expressions (9) and (10) are identical, but the DO loops are
interchanged.  Reaching executes (10) in ascending i and, for each i, in
ascending j.  One can show by induction that the effect of i executions of
the nested DO loops is to set each label vk equal to the length of the

shortest path from node 1 to node k whose final arc (l, k)  has l ≤ i.  As a

consequence, reaching stops with vk  = fk for all k.

The above pulling and reaching algorithms require work (number
of computational operations) proportional to n2.  For sparse or structured
networks, faster procedures are available (see Denardo 1982).

When reaching runs faster

Given that (9) and (10) are identical, and that each is executed exactly
once per arc in the network, we can conclude that reaching and pulling
entail the same calculations.  Moreover, when (9) or (10) is executed for
arc (i, j), label vi is known to equal fi  but fj  is not yet known.

The key difference between the two methods is that i varies on the
outer loop of reaching, but on the inner loop of pulling.  We now describe
a simple (and hypothetical) situation in which reaching may run faster.
Suppose it is known prior to the start of the calculations that the f-values
will be properly computed even if we don’t execute (9) or (10) for all arcs
(i, j) having fi  > 10.  To exclude these arcs when doing reaching, it is

necessary to add a test to Step 2 that determines whether or not vi exceeds

10.  If so, Step 3 is omitted.  This test is performed on the outer loop; it
gets executed roughly n times.  To exclude these arcs when doing pulling,
we must add the same test to Step 3 of the algorithm.  If vi   is greater than

10, (9) is omitted.  This test is necessarily performed on the inner loop
which gets executed roughly n 2/2 times.  (The exact numbers of these
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tests are (n − 1) and (n − 1)n/2, respectively; the latter is larger for all n >

2.)

In the following discussion from Denardo, we present four
optimization problems whose structure accords reaching an advantage.  In
each case, this advantage stems from the fact that the known f-value is
associated with a node on the outer loop of the algorithm.  Consequently,
the savings is O(n 2/2) rather than O(n), as it would be if the known f-value
were associated with a node on the inner loop.

First, suppose it turns out that no finite-length path exists from
node 1 to certain other nodes.  One has vj  = fj  = ∞ for these nodes.  It is

not necessary to execute (9) or (10) for any arc (i, j) having vj = ∞.  If

reaching is used, fewer tests are needed because i varies on the outer loop.

Second, consider a shortest-path problem in which one is solely
interested in fk  for a particular k, and suppose that all arc lengths are

nonnegative.  In this case, it is not necessary to execute (9) or (10) for any
arc (i, j) having vi  ≥ vk.  Checking for this is quicker with reaching because

i varies on the outer loop.

Third, consider a shortest-route problem in a directed acyclic
network where the initial node set I = {1}, but where the nodes are not
numbered so that each arc (i, j) satisfies i < j.  To solve the recursion, one
could relabel the nodes and then use the pulling method.  The number of
computer operations (arithmetic operations, comparisons, and memory
accesses) needed to relabel the nodes, however, is roughly the same as the
number of computer operations needed to determine the shortest path tree.
A saving can be obtained by combining relabeling with reaching as
follows.  For each node i, initialize label b(i) by equating it to the number
of arcs that terminate at node i.  Maintain a list L consisting of those nodes
i having b(i) = 0.  Node 1 is the only beginning node, so L = {1} initially.
Remove any node i from L. Then, for each arc (i, j) emanating from node i,
execute (10), subtract 1 from b(j)  , and then put j onto L if b(j) = 0.
Repeat this procedure until L is empty.

Fourth, consider a model in which node i describes the state of the
system at time ti.  Suppose that each arc (r, s) reflects a control

(proportional to cost) crs which is in effect from time tr to time ts, with tr <

ts.  Suppose  it is known a priori that a monotone control is optimal (e.g.,

an optimal path (1, … , h, i, j, … ) has chi ≤ cij).  This would occur, for

instance, in an inventory model where the optimal stock level is a
monotone function of time.  The optimal path from node 1 to an
intermediary node i has some final arc (h, i).  When reaching is used, it is
only necessary to execute (10) for those arcs (i, j) having chi ≤ cij .  This
allows us to prune the network during the computations on the basis of
structural information associated with the problem.  The test is
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accomplished more quickly with reaching because i varies on the outer
loop.

In the next section, we generalize the hypothetical above situation
and show how reaching can be combined with a bounding procedure to
reduce the size of the network.  The main disadvantage of reaching is that
it can entail more memory accesses than traditional recursion during the
computations.  A memory access refers to the transfer of data between the
storage registers of a computer and its main memory.

Elimination By Bounds

Our ability to solve dynamic programs is predominantly limited by the
size of the state space and the accompanying need to store excessive
amounts of information.  This contrasts sharply with our ability to solve
other types of mathematical programs where the computational effort is
the limiting factor.  One way to reduce the size of the state space is to
identify, preferably as early as possible in the calculations, those states
that cannot possibly lie on an optimal path.  By eliminating those states,
we also eliminate the paths (and hence the states on those paths)
emanating from them.  In this section, we describe a fathoming test that
can be performed at each iteration of a DP algorithm.  The reaching
procedure is the best choice for implementation.  If the test is successful,
the state is fathomed and a corresponding reduction in the state space is
realized.

To begin, consider a general  dynamic program whose state space
can be represented by an acyclic network where the objective is to
determine the minimum cost path from any initial state (a member of I) to
any final state (a member of F).  Let P be the collection of all feasible
paths and let P* be the optimal path. The problem can be stated as follows.

z(P*) = MinimizeP∈P z(P)

Now consider an arbitrary state s ∈ S and a feasible path Ps that

passes through s.  Divide the path into two subpaths: P1
s which goes from

an initial state to s, and P2
s which goes from s to a final state.  The

objective for path Ps is also divided into two components z(P1
s) and z(P2

s),

where

 z(Ps)  =  z(P1
s)  +  z(P2

s).

The reaching method starts from an initial state and derives for
each state, in increasing lexicographic order, the value fb(s).  This is the
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objective for the optimal path from an initial state to s. Thus, if P1 is the
set of all feasible subpaths from any state in I to s

fb(s)  = MinimizeP
1
s∈P

1 z(P1
s).

We can also define the quantity f(s) as the objective for the optimal
path from s to a final state.  Letting P2 be the set of all subpaths from s to a
state in F, we have

f (s)  = MinimizeP
2
s∈P

2 z(P2
s).

Recall that f(s) is the value obtained by backward recursion; however, in
the reaching procedure this value is not available.  Rather we assume the
availability of some computationally inexpensive procedure for obtaining
a lower bound, zLB(s), on f(s); that is,

zLB(s) ≤ f(s).

We also assume that it is possible to find a feasible path PB from

some state in I to some state in F with relatively little computational
effort.  It is not necessary for this path to pass through the state s
considered above.  Let zB = z(PB) be the objective value for the path.  The

subscript “B” stands for “best” to indicate the “best solution found so far”;
that is, the incumbent.

The bounding test for state s compares the sum of fb(s) and zLB(s)

to zB.  If

zB  ≤ fb(S) + zLB(s)

then any path through s can be no better than the solution already
available, PB, and s can be fathomed.  If the above inequality does not

hold, s may be part of a path that is better than PB and cannot be fathomed.

This is called the bounding elimination test, because the lower bound
zLB(s) is used in the test, and zB represents an upper bound on the

optimum.

The effectiveness of the test depends on the quality of the bounds
zB and zLB(s) and the ease with which they are determined.  The value zB

should be as small as possible, and the value of zLB(s) should be as large

as possible.  There is always a tradeoff between the quality of the bounds
and the computational effort involved in obtaining them.

To implement the bounding procedures, two new user supplied
subroutines are required.  We will call them RELAX and ROUND, and
note that they are problem dependent.  RELAX provides the lower bound
zLB(s), and usually involves solving a relaxed version of the original
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problem.  The solution to a minimization problem with relaxed
constraints, for example, will always yield the desired result.

The purpose of ROUND is to determine a feasible path from s to a
state in F.  Call this path P2

s.   The fact that P2
s is feasible but not

necessarily optimal means that the objective z(P2
s) is an upper bound on

f(s).  The combination of the optimal subpath to s which has the objective
fb(s) and the subpath P2

s provides us with a feasible path through the state

space with objective value

 fb(s) + z(P2
s).

This is an upper bound on the optimal solution z(P*) and is a candidate for
the best solution zB.  In particular, if

fb(s) + z(P2
s) < zB

 then let zB = fb(s) + z(P2
s)

and replace the incumbent PB with the concatenation of P2
s and the optimal

path that yields fb(s).  

The name ROUND is used because the procedure for determining
P2

s is often the “rounding” of the solution obtained by RELAX.  This is

illustrated in Example 4 below.  Any heuristic that provides a good
feasible solution can be used to obtain the path P2

s.

Note that for state s if

 z(P2
s)  = zLB(s)

then P2
s must be an optimal path from s to a state in F.  The concatenation

of the optimal path to s and the subpath P2
s yields an optimal path through

s.  In this case, s can also be fathomed because further exploration of the
state space from state s cannot yield a better solution.

The bounding elimination test is an addition to the reaching
procedure.  Recall that this procedure considers each state in increasing
lexicographic order.  The tests are performed immediately after a state s is
selected for the reaching operation but before any decisions from that state
have been considered.  The idea is to eliminate the state, if possible, before
any new states are generated from it.  The reaching algorithm is repeated
below for a minimization objective with the bounding modifications
added.
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Reaching Algorithm with Elimination Test

Step 1. Start with a set of initial states I and store them as list in memory.
Call the list S.  Initialize fb(s) for all s ∈ I. These values must be

given in the problem definition.  Let s ∈ S be the

lexicographically smallest state available.  Set zB = ∞.

Step 2. Compute a lower bound zLB(s) on the optimal subpath from s to a

state in F.

i. If fb(s) + zLB(s) ≥ zB then fathom state s and go to Step 6.

Otherwise, try to find a feasible path from s to a final state in
F.  Call it P2

s and compute the objective value z(P2
s).  If a

feasible path cannot be found go to Step 3.

ii. If fb(s) + z(P2
s) ≥ zB go to Step 3.

iii. If fb(s) + z(P2
s) < zB then put zB ← fb(s) + z(P2

s)  and let PB be

the concatenation of P2
s and the optimal path to s.

iv. If z(P2
s) = zLB(s) then fathom s and go to Step 6; otherwise,

go to Step 3.

Step 3. Find the set of decisions D(s) associated with s.  Assume that
there are l feasible decisions and let

D(s) = {d1, d2, … , dl}.

Set k = 1 and go to Step 4.

Step 4. Let the current decision be d = dk and find the successor state s' to
s using the forward transition function:

s' = T(s, d).

If s' is not feasible go to Step 5; otherwise, search the list S to
determine if s' has already been generated.

i. If not, put S ← S ∪ {s'}, d*(s') ← dk and compute the initial

estimate of the optimal path value for state s'.
-
fb(s') = fb(s) + z(s, d, s')

ii. If s' ∈ S indicating that the state already exists, whenever

-
fb(s') > fb(s) + z(s, d)

put 
-
fb(s') ← fb(s) + z(s, d), d*(s') ← d and go to Step 5.
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Step 5. Put k ← k + 1.  If k > l, put fb(s) ← 
-
fb(s) and go to Step 6 (all

feasible decisions have been considered at s so we can examine
the next state; also the optimal path to s is known). If k ≤ l, go to
Step 4.

Step 6. Find the next lexicographically larger state than s on the list S \ F.
Rename this state s and go to Step 2.  If no state can be found go
to Step 7.

Step 7. Stop, the state generation process is complete and the optimal
path has been found from all initial states in I to all states in S
(note that S will not in general contain all feasible states because
some will have been fathomed).  The optimal path is PB.  Perform

backward recovery to determine the optimal sequence of states
and decisions.

At Step 6, a test is needed to determine if the next
lexicographically larger state is in F.   It is always possible to test a state s'
when it is generated at Step 4 but this would be inefficient because some
states are generated many times.  When we arrive at Step 7, the optimal
path is the incumbent PB.  Therefore, it is not necessary to examine all s ∈
F and pick the one associated with the smallest value of fb(s) as was the

case for the reaching algorithm without the bounding subroutines.

Lower BOUND Procedure

There are two conflicting goals to consider when selecting a procedure to
obtain the lower bound zLB(s).  The first is that it should be computational

inexpensive because it will be applied to every state.  The second is that it
should provide as large a value as possible.  The larger the lower bound,
the more likely the current state can be fathomed.

There are also at least two ways to find a lower bound for a
particular problem.  First, some constraint on the problem can be relaxed
so that the set of feasible solutions is larger.  Solving the relaxed problem
will yield an optimal solution with a value that can be no greater than the
optimum for the original problem.  Second, the objective function can be
redesigned so that it lies entirely below the objective of the original
problem for every feasible solution.  Then, the optimal solution of the new
problem will have a smaller value than the original.

Employing either of these two approaches, independently or in
combination, results in a relaxed problem whose solution is obtained with
what we called the BOUND procedure.  There are many ways to form a
relaxed problem; however, ease of solution and bound quality are the
primary criteria used to guide the selection.
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Knapsack Problem

We have already seen that a relaxation of the one constraint knapsack
problem can be obtained by replacing the integrality requirement xj = 0 or

1 by the requirement 0 ≤ xj ≤ 1 for j = 1, … , n.  This is a relaxation because

all the noninteger values of the variables between 0 and 1 have been added
to the feasible region.

A multiple constraint binary knapsack problem is shown below.

Maximize

 n

Σ
j=1

 cjxj

subject to

 n

Σ
j=1

 aijxj ≤ bi i = 1, … , m (11)

xj = 0 or 1 j = 1, … , n

Again, an obvious relaxation is to replace the 0-1 variables with
continuous variables bounded below by zero and above by one.  The
resulting problem is a linear program.  The simplex method, say, would be
the BOUND procedure.

A simpler relaxation can be obtained by multiplying each
constraint by an arbitrary positive constant λi (i = 1, … , m) and then

summing.  This leads to what is called a surrogate constraint.

 n

Σ
j=1

 

 m

Σ
i=1

 λiaijxj  ≤  

 m

Σ
i=1

 λibi (12)

Replacing (11) with (12) results in a single constraint knapsack problem.
Although the single and multiple knapsack problems require the same
amount of computational effort to solve in theory, in practice the former is
much easier.  In any case, solving the relaxation as a single constraint
dynamic program or a single constraint LP will give a lower bound zLB(s)

at some state s.

Job Sequencing Problem
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A relaxation of the sequencing problem with due dates discussed in
Section 12.5 can be obtained by redefining the objective function.
Consider the nonsmooth cost function c(j, t) for job j as shown in Fig. 6.
The cost is zero if the job is finished before the due date d(j) but  rises
linearly at a rate a(j) as the due date is exceeded.  A linear function that
provides a lower bound to c(j, t) is shown in Fig. 7.  This function
intersects the cost axis at the point – d(j)a(j) and rises at a rate a(j).  For
completion times t(j) less than d(j) the function has negative values
indicating a benefit, while it is the same for times above d(j).

c(j, t)

a(j)

d(j)
0

t(j)

Figure 6. Cost function for sequencing
problem

c(j, t)

d(j)

a(j)

– d(j)a(j)

0
t(j)

Figure 7.  Lower bound cost function

The problem with the new cost function is much easier to solve
than the original.  To see this, let p(j) be the time to perform job j and
denote by jk the kth job in a sequence.  The objective function can now be

written as

z =  ∑
k=1

n
 – d(jk)a(jk)  +  ∑

k=1

n
 a(jk)t(jk)  (6)

for some sequence (j1, j2, … , jn), where t(jk) is the completion time of job

jk.

The first term in the expression for z does not depend on the
sequence chosen, and is constant. Therefore, it can be dropped in the
optimization process.  The remaining term is the objective function for the
linear sequencing problem.  The optimal solution of this problem can be
found by ranking the jobs in the order of decreasing ratio a(j)/p(j) and
scheduling the jobs accordingly.  Adding back the constant term provides
the desired lower bound on the optimum.



Reaching 16

Traveling Salesman Problem

Recall that the traveling salesman problem (TSP) is described by a point to
point travel cost matrix, as illustrated for a six city example in Table 9 (see
Section 8.6).  The salesman must start at a given home base, traverse a
series of arcs that visits all other cities exactly once, and then return to the
home base.  The optimal tour for this example is (1, 4) à (4, 3) à (3, 5) à
(5, 6) à (6, 2) à (2, 1)} with objective value zTSP = 63.  The highlighted

cells in Table 9 are the arcs in this solution.

Table 9. Cost matrix for city pairs

1 2 3 4 5 6

1 –– 27 43 16 30 26

2 7 –– 16 1 30 25

3 20 13 –– 35 5 0

4 21 16 25 –– 18 18

5 12 46 27 48 –– 5

6 23 5 5 9 5 ––

A characteristic of a tour is that one and only cell must appear in
every row and column of the cost matrix.  This suggests that the classical
assignment problem (AP), whose solutions have the same characteristic,
can be used as a relaxation for the TSP.  For the AP the goal is to assign
each row to one and only one of the columns so that the total cost of the
assignment is minimized.  The solution to the assignment problem for the
matrix in Table 9 is {(1, 4), (2, 1), (3, 5), (4, 2), (5, 6), (6, 3)} with objective
value zAP = 54.  The corresponding cells are highlighted in Table 10.

Relating this solution to the TSP we see that two separate routes or
subtours can be identified: (1, 4) à (4, 2) à (2, 1) and (3, 5) à (5, 6) à
(6, 3).  But TSP solutions are not allowed to have subtours so the AP
solution is not feasible to the TSP.  The restriction that the salesman
follow a single tour has been dropped.  The AP is thus a relaxation of the
TSP, and because it is much easier to solve, it is a good candidate for the
BOUND procedure of dynamic programming.
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Table 10. Assignment problem solution

1 2 3 4 5 6

1 –– 27 43 16 30 26

2 7 –– 16 1 30 25

3 20 13 –– 35 5 0

4 21 16 25 –– 18 18

5 12 46 27 48 –– 5

6 23 5 5 9 5 ––

An even simpler bounding procedure can be devised by
considering a relaxation of the assignment problem where we select the
minimum cost cell in each row.  The corresponding solution may have
more than one cell chosen from a column so, in effective, we have
dropped the requirement that one and only cell from each column be
selected.  For the cost matrix in Table 9, one of several solutions that
yields the same objective value is {(1, 4), (2, 4), (3, 6), (4, 5), (5, 6), (6, 3)}
with zRAP = 45. This solution was found with almost no effort by scanning

each row for the minimum cost cell.  The general relationship between the
three solutions is zRAP ≤ zAP ≤ zTSP which was verified by the results 45 <

54 < 63.

This example shows that there may be many relaxations available
for a given problem.  There is usually a tradeoff between the effort
required to obtain a solution and the quality of the bound.  By going from
the assignment problem to the relaxed assignment problem, for example,
the bound deteriorated by 16.7%.  Because very large assignment
problems can be solved quite quickly, the reduced computational effort
associated with solving the relaxed assignment would not seem to offset
the deterioration in the bound, at least in this instance.  Nevertheless, the
selection of the best bounding procedure can only be determined by
empirical testing.

Example 4

Consider the knapsack problem below written with a minimization
objective to be consistent with the foregoing discussion.

Minimize  z = – 8x1 – 3x2 – 7x3 – 5x4 – 6x5 – 9x6 – 5x7 – 3x8

subject to x1 + x2 + 4x3 + 4x4 + 5x5 + 9x6+ 8x7 + 8x8 ≤ 20

xj  =  0 or 1,  j = 1, … , 8
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The variables are ordered such that the “bang/buck” ratio is decreasing,
where

 bang/buck =  



objective coefficient

constraint coefficient
  =  






cj

aj

This term derives from the maximization form of the problem where the
“bang” is the benefit from a project and the “buck” is its cost.  Thus the
bang per buck ratio is the benefit per unit cost.  If the goal is to maximize
benefits subject to a budget constraint on total cost, a greedy approach is
to choose the projects (set the corresponding variables to 1) with the
greatest bang per buck ratio.  In our case, such a heuristic first sets x1 to 1

and then in order x2 = 1, x3 = 1, x4 = 1 and x5 = 1.  At this point the

cumulative benefit is 29 and the cumulative cost (resource usage) is 15.
An attempt to set x6 to 1 violates the constraint so we stop with the

solution x = (1, 1, 1, 1, 1, 0, 0, 0) which is not optimal.

Although this greedy heuristic rarely yields the optimum, it is
extremely easy to execute and will form the basis of our ROUND
subroutine for the example.  For the RELAX subroutine we solve the
original problem without the integrality requirements on xj.  That is, we

substitute 0 ≤ xj ≤ 1 (j = 1, … , 8) for the 0-1 constraint.  What results is a

single constraint bounded variable linear program whose solution also
depends on the bang per buck ratios.  The following greedy algorithm
yields the LP optimum.

Step 1. Set z0 = 0, b0 = 0 and j = 1.

Step 2. If j > n, then stop with zLB = zj-1.

If bj-1 + aj ≤ b, then

set xj = 1,

zj = zj-1 + cj,

bj  = bj-1 + aj,

and go to Step 3.

If bj-1 + aj  > b, then

set xj = (b – bj-1)/aj

zj = zj-1 + cjxj,

and stop with zLB = zj.

Step 3. Put j ← j + 1 and go to Step 2.
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Note that zLB is a lower bound on the optimum of the original

problem because the integrality requirement on the variables has been
relaxed.  The solution will not be feasible, though, when one of the
variables is fractional.  If all variables turn out to be 0 or 1, the solution is
both feasible and optimal to the original problem.

Example 5

We consider again the 15 variable binary knapsack problem discussed in
Section 12.3.  In Table 11, the items are arranged in decreasing order of
the benefit/weight ratio to simplify the determination of bounds.  The
weight limit is 30 and the objective is to maximize total benefit.

Table 11. Data for binary knapsack problem

Item 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Benefit 32 37.2 33 29.1 34.6 22.4 18.6 23.6 19.8 25 11.5 12.8 8 9.5 14.1

Weight 16 19 17 15 18 12 10 13 11 14 7 8 5 6 9

Benefit/
Weight

2.00 1.96 1.94 1.94 1.92 1.87 1.86 1.82 1.80 1.79 1.64 1.60 1.60 1.58 1.57

The problem was solved three different ways to provide a
comparison of methods: (i) backward recursion with an exhaustively
generated state space, (ii) reaching without bounds, and (iii) reaching with
bounds.  The bounds procedures were similar to those described in the
previous example.  To allow for multiple optimal solutions, we did not
eliminate states whose upper and lower bounds were equal.

The results of the computations are shown in Table 12. The
reduced number of states obtained with reaching without bounds is due to
the fact that states not reachable from the initial state are not generated.
When the bounds procedures are added, a further reduction is achieved
due to fathoming.

Table 12. Comparison of computational procedure

Method Number of states

Exhaustive generation/backward recursion 466

Reaching without bounds 230

Reaching with bounds 68


