
Operations Research Models and Methods
Paul A. Jensen and Jonathan F. Bard

Dynamic Programming.S1
Sequencing Problems
Many operational problems in manufacturing, service and distribution require the
sequencing of various types of activities or items. Examples include a production facility
in which chassis must be sequenced through an assembly line, an express mail service
where parcels and letters must be routed for delivery, and a utility company that must
schedule repair work. In general, problems in this class are easily formulated as
mathematical programs but, with a few exceptions owing to special structure, are difficult
to solve. In this section, we introduce a robust dynamic programming formulation that
can be used to tackle a number of such problems. In most cases, however, the size of the
state space is an exponential function of the number of items being sequenced. In
practical instances, the success of the DP approach may depend on our ability to reduce
the number of states that must be explored in the search for the optimum. One way to do
this is to impose precedence requirements on the items to be sequenced; a second way is
to introduce the logic of branch and bound within a dynamic programming algorithm.

Single Machine Scheduling

As a prototype, consider the problem of sequencing a set of n jobs through
a single machine that can work on only one job at a time. Once a job is
started, it must be completed without preemption. The time required to
process job j once the machine begins to work on it is p(j) for j = 1, . . . , n.
The associated cost c(j, t) is a function of its completion time t and can
take a variety of forms, the simplest being

c(j, t) = a(j)t

where a(j) is the cost per unit time for job j. As we saw in Section 9.1 on
greedy algorithms, this form admits a very simple solution when the
objective is to minimize the total completion cost of all the jobs. The
optimum is obtained by computing the ratio p(j)/a(j) for each job and then
sequencing them in order of increasing values of this ratio. The job with
the smallest ratio is processed first, the job with next smallest ratio is
processed second, and so on until all jobs are completed. Ties may be
broken arbitrarily.

A much more difficult problem results when each job j has a due
date b(j). The cost of a job is zero if it is completed before its due date but
increases linearly if it is tardy.

c(j, t) =

0 for 0 ≤ t ≤ b(j)

a(j)(t – b(j)) for t > b(j)

The goal of the optimization is to determine the sequence that has the
smallest total cost. Table 21 gives the relevant parameters for a 4-job

Sequencing Problems 2

instance. There are 4! = 24 possible solutions. For the solution (3, 1, 2,
4), the completion times are 7, 12, 21 and 31 respectively. Jobs 3 and 1 are
completed before their due date so no cost is incurred. Job 2 is 11 days
late resulting in a cost of $440 and job 4 is 14 days late resulting in a cost
of $420. The total cost is therefore $860.

Table 21. Job parameters for a sequencing problem

Job

j

Processing time

p(j)

Due date

b(j)

Cost per day

a(j)

1 5 12 $80

2 9 10 40

3 7 10 100

4 10 17 30

 In general, we write a sequence as a vector (j1, j2, j3, . . . , jn) which

implies that job j1 is processed first, job j2 second and so on until the final
job jn. This vector is a permutation of the integers 1 through n and admits
n! possible sequences, a number that increases rapidly with n. In fact, it is
not possible to find a polynomial function of n that provides a bound on
how fast n! grows.

The time at which a job is finished is determined by its place in the
sequence. Job jk is in position k and is not started until the previous k – 1
jobs finish processing. It ends at time t(jk), the sum of the processing

times of the previous jobs plus its processing time p(jk).

t(jk) = ∑
i=1

k
 p(ji)

The cost associated with a particular sequence is the sum of the
individual job costs as determined by their completion times. The
objective function is then

z = ∑
j=1

n

 c(j, t(j)).

The goal is to minimize z.

To solve this problem with dynamic programming, we must first
describe it as a sequential decision process. In this case, the description is

Sequencing Problems 3

once again straightforward with the decisions corresponding to places in
the sequence. Thus the decision at each step is a job number. The DP
model is given in Table 22.

Table 22. General sequencing problem

Component Description

State To determine the state definition, consider the information neces-
sary to specify the set of feasible decisions and to evaluate the
cost associated with a decision. At a particular step in the
sequence, a job is a feasible choice if it hasn't been chosen
before. Thus the minimal information the state must provide is
the set of jobs previously included in the sequence. This also is
the information necessary to compute the time of completion of
the job and hence the associated cost. To describe the state we
need a vector with n components

s = (s1, s2, . . . , sn), where

sj =

0 if job j has not been included in the sequence

1 if job j has already been included in the sequence

Initial state set I = {(0, 0, . . . , 0)}

None of the jobs has been scheduled.

Final state set F = {(1, 1, . . . , 1)}

All jobs are scheduled.

State space The state vector is a binary vector with n components.

Therefore, there are 2n members of the state space representing
all possible combinations.

S = {s : sj = 0 or 1, j= 1, . . . , n}

Decision The decision vector has a single component that identifies the
next job to be processed.

d = (d), where d = the next job in the sequence

Feasible decision The feasible decisions at a given state are the jobs not already
chosen.

D(s) = {j : sj = 0, j= 1, . . . , n }

Sequencing Problems 4

Transition function The transition function changes the state to reflect the inclusion
of an additional job in the sequence.

s' = T(s, d), where s '
d = 1 and s'

j = sj for j ≠ d

Decision objective z(s, d) = c(d, t), where t = ∑
j=1

n
sjp(j) + p(d)

The cost function is problem dependent. For the job sequencing
problem with tardiness penalties we use the cost function defined
above.

Path objective Minimize z(P) = z(s, d) + f (s f)
s∈S,d∈D(s)

∑

Final value function f(s) = 0 for s ∈ F

Example 10 – Job Sequencing with Tardiness Penalties

The decision network for the data given in Table 21 is depicted in Fig. 14.
The state vectors are shown in parentheses adjacent to the nodes. Arcs
represent transition from one state to the next and each has an associated
cost (not shown). The solution is found by finding the shortest path
through the network and is shown by the heavy lines in the figure. The
optimum is the sequence used as an example above.

Although the shortest path problem on an acyclic network can be
solved efficiently, the difficulty here is that there are an exponential

number of states, 2n. This means that the DP approach as given in Table
11 does not lead to an efficient solution procedure for most sequencing
problems; that is, the amount of computations is not bounded by a
polynomial function of n. Because of the large number of states, problems
can be solved only for small values of n1.

The state space is considerably reduced if an ordering between
some jobs is imposed. For example, if one specifies that job 3 must
precede job 1, the number of feasible states is reduced from 16 to 12.
Each additional restriction reduces the number of states in some nonlinear
fashion.

1 As a point of reference, we solved a 10 job problem with 1024 states in about eight minutes on a 400 Mz
Macintosh G3 using the Excel add-in.

Sequencing Problems 5

(0,0,0,0)

(0,1,0,0)

(0,0,1,0)

(1,0,0,0)

(0,0,0,1)

(1,0,0,1)

(0,1,1,0)

(1,0,1,0)

(0,1,0,1)

(1,1,0,0)

(0,0,1,1)

(1,1,0,1)

(1,0,1,1)

(1,1,1,0)

(0,1,1,1)

(1,1,1,1)

(0)

(440)

(420)

(0)

Figure 14. Decision network for 4-job sequencing problem

Traveling Salesman Problem

In our description of the total tardiness problem, the cost associated with a
particular job did not depend on its immediate predecessor. There are
many situations, though, where these costs are sequence dependent. In
manufacturing, for example, it may be necessary to change the tooling
between two successive jobs, or in scheduling propane deliveries, the
length of the route and hence travel cost depends on the order in which
customers are visited. In these cases, it would be necessary to extend the
definition of the state space in Table 22 to include an additional state
representing the last job processed in the sequence. The traveling salesman
problem (TSP fits this situation.

Sequencing Problems 6

Recall that in the TSP a salesman must visit n cities starting and
ending at his home base. The objective is to minimize some measure of
travel cost subject to the restriction that each city must be visited once and
only once. A feasible solution is called a tour. We arbitrarily identify city
1 as the home base. Like the sequencing problem, a solution is described
by a vector (1, j2, j3, . . . , jn) which implies that the tour starts at city 1, goes

next to city j2, and so on until the final city jn is reached. To complete the
tour, the salesman must travel from jn back to city 1. The cost of the tour

is

z = c(1, j2) + c(jk , jk+1) + c(jn ,1)
k =2

n−1

∑
where the function c(i, j) specifies the cost of traveling from city i to city j.
When c(i, j) represents the distance between i and j, the objective of the
problem is simply to minimize the total distance traveled.

The dynamic programming model is similar to the sequencing
model in that the state identifies the set of cities that have been visited at
any point in the tour. To compute the cost of traveling to the next city,
though, we need to the city visited. An additional state variable is defined
for this purpose.

Table 23. Traveling salesman problem

Component Description

State s = (s1, s2, . . . , sn,, sn+1), where

sj =

0 if city j is not in the sequence

1 if city j is in the sequence
 j = 1,…,n

sn+1= index of the last city in the sequence

Initial state set I = {(1, 0, . . . , 0, 1)}

Only city 1 is in the tour and that is the last city visited.

Final state set F = {(1, 1, . . . , 1, j) : j = 2, … , n}

All cities are in the tour. The last city can be any city but 1.

Sequencing Problems 7

State space There are 2n-1 possible combinations of the first n state variables,
since s1 is fixed as 1. The last state variable can take on n – 1

values.

S = {s : s1= 1, sj = 0 or 1, j= 2, … , n and sn+1= 2, … , n}

Decision The decision vector has a single component that identifies the
next city to be included in the tour.

d = (d), where d = the next city in the tour

Feasible decision D(s) = {j : sj = 0, j= 2, … , n }

The feasible decisions at a given state are the cities not yet
visited.

Transition function The transition function changes the state to reflect the inclusion
of an additional city in the tour. The last state variable becomes
the decision.

s' = T(s, d), where s '
d = 1, s'

j = sj for j ≠ d, and sn+1 = d

Decision objective z(s, d) = c(sn+1, d)

where c(•, •) is defined for all city pairs.

Path objective Minimize z(P) = z(s, d) + f (s f)
s∈S,d∈D(s)

∑

Final value function f(s) = c(sn+1, 1) for s ∈ F

This function is the cost of traveling from the last city to city 1.

Example 11 – Traveling Salesman Problem

Consider an eight city problem on a square grid with the coordinates
assigned randomly in the range 0 to 25. The following matrix shows the
locations of the cities in the (x, y)-plane.

x y
1 7.0 9.2
2 20.0 9.3
3 20.6 15.3

Sequencing Problems 8

4 9.0 7.5
5 6.6 13.7
6 4.2 5.2
7 4.3 4.7
8 13.9 12.7

For the cost function we use the p-norm distance between a city
pair given by

c(i, j) = |xi – xj|
p + |yi – yj|

p 1/p
 .

When p =2, this function gives the Euclidean distance between the two
points; when p = 1, the function gives the rectilinear distance. Other
values are possible. For the example, we used p = 2.

The dynamic programming model of the problem has 449 states.
The optimal solution is shown in Fig. 15. The effort required to solve the
problem is primarily influenced by the number of states. It is possible to
reduce this number if precedence relations can be specified between city
pairs.

0

2

4

6

8

10

12

14

16

18

20

22

0 2 4 6 8 10 12 14 16 18 20 22

1 2

3

4

5

7

8

6

1

Figure 15. Optimal solution to TSP

Sequencing Problems 9

