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Probability Models.S3
Continuous Random Variables
A continuous random variable is one that is measured on a continuous scale.  Examples are
measurements of time, distance and other phenomena that can be determined with arbitrary
accuracy.  This section reviews the general concepts of probability density functions and presents
a variety of named distributions often used to model continuous random variables1.

Probability Distributions

The probability density function  (p.d.f.) is a function,
fX(y), which defines the probability density for each value
of a continuous random variable.  Integrating the
probability density function between any two values gives
the probability that the random variable falls in the range

of integration.

The meaning of p.d.f. is different for discrete and
continuous random variables.  For discrete variables
p.d.f. is the probability distribution function and it
provides the actual probabilities of the values
associated with the discrete random variable.  For
continuous variables, p.d.f. is the probability density
function, and probabilities are determined by
integrating this function.  The probability of any
specific value of the random variable is zero.

The example for this introductory
section is the triangular distribution illustrated in Fig.
6.  The functional form for this density has a single
parameter c that determines the location of the highest
point, or mode, of the function.  The random variable
ranges from 0 to 1.  No values of the random variable

can be observed outside this range where the density function has the value 0.

                                                
1 The Add-ins allow the specification of any of the distributions considered in this section computes probabilities
and moments for each.
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Figure 6.  The Triangular Distribution with c = 0.3.

The cumulative distribution function
(c.d.f.), Fx(x), of the random variable is the probability

that the random variable is less than the argument x.  The
p.d.f. is the derivative of the c.d.f.  We drop the subscript
on both fx and Fx when there is no loss of clarity.  The

c.d.f. has the same meaning for discrete and continuous
random variables, however values of the probability
distribution function are summed for the discrete case

while integration of the density function is required for the continuous case.

As x goes to infinity, Fx(x) must go to 1.  The area under an acceptable

p.d.f. must, therefore, equal 1.  Since negative probabilities are impossible, the
p.d.f. must remain nonnegative for all x.

Integrating the density function for
the triangular distribution results in the c.d.f. also
shown in Fig. 6.  The example illustrates the
characteristics of every c.d.f..  It is zero for the
values of x below the lower limit of the range.
Within the range the function increases to the
value of 1.  It remains at 1 for all x values greater
than the upper limit of the range.  The c.d.f. never
decreases and remains constant only when the
p.d.f. is zero.

The probability that the random
variable falls between two given values is the
integral of the density function between these
two values.  It doesn’t matter whether the

Cumulative Distribution
Function

Fx(x) =  P(X < x) = ⌡⌠
-∞

x

 fx(y) dy .

fx(x) = 
dFx(x)

dx  .

The c.d.f. of the Triangular
Distribution
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0 for x ≤ 0
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equalities are included in the probability statements, since specific values of the
random variable have zero probability.

To illustrate, consider again a random variable with the triangular
distribution with c equal to 0.3.  Since we have the closed form representation of
the c.d.f., probabilities are easily determined using the c.d.f. rather than by
integration.  For example,

P{0 < X < 0.2} =F(0.2) - F(0) = 0.1333 - 0 = 0.1333,

P{0.2 < X < 0.5} =F(0.5) - F(0.2) = 0.6429 – 0.1333 = 0.5095,

P{X > 0.5} = 1 – P{X < 0.5} = 1 – F(0.5) = 1 -  0.6429  = 0.3571.

As for discrete distributions, descriptive measures include the mean,
variance, standard deviation, skewness and kurtosis of continuous distributions.
The general definitions of these quantities are given in Table 10.  In addition we
identify the mode of the distribution, that is the value of the variable for which the
density function has its greatest probability, and the median, the value of the
variable that has the c.d.f equal to 0.5.

Table 10.  Descriptive Measures
Measure General Definition Triangular Distribution (c = 0.3)

Mean  = E{X} = xf (x)dx
−∞

+∞

∫ .  = 
1 + c

3   = 0.433

Variance
2 = (x − µ)2 f (x)dx

−∞

∞

∫ 2 = 
1 – 2c + 2c2 – c3

18(1 – c)   =  0.0439

Standard Deviation
 = 2  = 0.0439 = 0.2095.

Skewness 1 =
(µ3)2

6

µ3 = (x − µ)3 f (x)dx
−∞

∞

∫

Kurtosis 2 =
µ4

4

µ4 = (x − µ)4 f (x)dx
−∞

∞

∫



Continuous Random Variables 4

Named Continuous Distributions

Models involving random variables, require the specification of a probability
distribution for each random variable.  To aid in the selection, a number of named
distributions have been identified.  We consider several in this section that are
particularly useful for modeling random variables that arise in operations research
studies.

Logical considerations may suggest appropriate choices for a distribution.
Obviously a time variable cannot be negative, and perhaps upper and lower limits
caused by physical limitations may be identified.  All of the distributions
described in this section are based on logical assumptions.  If one abstracts the
system under study to obey the same assumptions, the appropriate distribution is
apparent.  For example, the queueing analyst determines that the customers of a
queueing system are independently calling on the system.  This is exactly the
assumption that leads to the exponential distribution for time between arrivals.  In
another case, a variable is determined to be the sum of independent random
variables with exponential distributions.  This is the assumption that leads to the
Gamma distribution.  If the number of variables in the sum is moderately large, an
appropriate distribution may be the Normal.

Very often, it is not necessary to determine the exact distribution for a
study.  Solutions may not be sensitive to distribution form as long as the mean and
variance are approximately correct.  The important requirement is to represent
explicitly the variability inherent in the situation.

In every case the named distribution is specified by the mathematical
statement of the probability density function.  Each has one or more parameters
that determine the shape and location of the distribution.  Cumulative distributions
may be expressed as mathematical functions; or, for cases when integration is
impossible, extensive tables are available for evaluation of the c.d.f..  The
moments of the distributions have already been derived, aiding the analyst in
selecting one that reasonably represents his or her situation.

The Normal Distribution

Ex. 11.  Consider the problem of scheduling an operating room.  From past experience we have
observed that the expected time required for a single operation is 2.5 hours with a standard
deviation of 1 hour.  We decide to schedule the time for an operation so that there is a 90%
chance that the operation will be finished in the allotted time.  The question is how much time to
allow?  We assume the time required is a random variable with a Normal distribution.

The probability density function of the
Normal distribution has the familiar "bell
shape".   It has two parameters  and , the

mean and standard deviation of the
distribution.  The Normal distribution has

The Normal Distribution
Parameters: , 

f(x) = 
1

2
exp{

−(x − µ)2

2 2
} for −∞ < x < ∞
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applications in many practical contexts.  It is often used, with theoretical
justification, as the experimental variability associated with physical
measurements.  Many other distributions can be approximated by the Normal
distribution using suitable parameters.  This distribution reaches its maximum
value at , and it is symmetric about the mean, so the mode and the median also

have the value ..  Fig. 7 shows the distribution associated with the example.
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Figure 7. The Normal distribution

It is impossible to symbolically integrate the density function of a Normal
distribution, so there is no closed form representation of the cumulative
distribution function.  Probabilities are computed using tables that appear in many
text books or using numerical methods implemented with computer programs.
Certain well known probabilities associated with the Normal distribution are in
Table 11.

Table 11. Ranges of the Normal Distribution
within one standard
deviation of the mean

P(µ-  < X < µ+  ) 0.6826

within two standard
deviations of the mean

P(µ-2  < X < µ+2  ) 0.9545

within three standard
deviations of the mean

P(µ-3  < X < µ+3  ) 0.9973

Considering the example given at the beginning of this section, we note
that the assumption of Normality cannot be entirely appropriate, because there is a
fairly large probability that the time is less than zero.  We compute

P(X < 0) = 0.0062

Perhaps this is a small enough value to be neglected.
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The original requirement that we reserve the operating room such that the
reserved time will be sufficient 90% of the time, asks us to find a value z such that

P(X < z) = 0.9.

For this purpose we identify the inverse probability function

F-1(p) defined as

z = F-1(p) such that F(z) = P(x < z) = p.

For the Normal distribution, we compute these values numerically using a
computer program.  For the example

z = F-1(0.9) = 3.782 hours.

Sums of Independent Random Variables

Consider again the operating room problem.  Now we will assign the operating room to a single
doctor for three consecutive operations.  Each operation has a mean time of 2.5 hours and a
standard deviation of 1 hour.  The doctor is assigned the operating room for an entire 8 hour day.
What is the probability that the 8 hours will be sufficient to complete the three operations?

There are important results concerning the sum of independent random variables.
Consider the sum of n independent random variables, each with mean   and

standard deviation ,

Y = X1 + X2 + …  + Xn.

Four results will be useful for many situations.

1. Y has mean and variance

Y = n   and Y2 = n 2.

2. If the Xi individually have Normal distributions, Y will also have a Normal
distribution.

3. If the Xi have identical but not Normal distributions, probabilities associated
with Y can be computed using a Normal distribution with acceptable
approximation as n becomes large.

4. The mean value of the n random variables is called the sample mean M =Y/n.
The mean and variance of the sample mean is

M  =   and M 2 = 2/n.

If the distribution of the Xi are Normal, the distribution of the sample
mean is also Normal.  If the distribution of the Xi are not Normal, the
distribution of the sample mean approaches the Normal as n becomes large.
This is called the central limit theorem.
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Results 1 and 2 are true regardless of the distribution of the individual Xi.  When
the Xi are not normally distributed, the accuracy of results 3 and 4 depend on the
size of n, and the shape of the distribution.

For the example, let X1, X2 and X3 be the times required for the three
operations.  Since the operations are done sequentially, the total time the room is
in use is, Y, where

Y = X1 +X2 + X3.

Since we approximated the time for the individual operation as Normal, then Y
has a Normal distribution with

Y = 3   = 7.5, Y2 = 3 2 = 3 and Y =  3   =1.732.

The required probability is

P{Y < 8} = 0.6136.

There is a 61% chance that the three operations will be complete in eight hours.
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Lognormal Distribution

Ex. 12.  Consider the material output from a rock crushing machine.  Measurements have
determined that the particles produced have a mean size of 2" with a standard deviation of 1".  We
plan to use a screen with 1" holes to filter out all particles smaller than 1".  After shaking the
screen repeatedly, what proportion of the particles will be passed through the screen?   For
analysis purposes we assume, the size of particles has a Lognormal distribution.

The Lognormal distribution exhibits a
variety of shapes as illustrated in   Fig. 8.
The random variable is restricted to
positive values.  Depending on the
parameters, the distribution rapidly rises
to its mode, and then declines slowly to
become asymptotic to zero.
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Figure 8.  Lognormal Distribution

The Lognormal and the Normal distributions are closely related as shown
in Fig. 9.  When some random variable X has a Lognormal distribution, the
variable Z  has a Normal distribution when

Z = ln(X).

Alternatively, when the random variable Z has a Normal distribution, the random
variable X has a Lognormal distribution when

X = exp(Z).

Lognormal Distribution
Parameters: , 

f(x) = 
1

2
exp{

(ln(x) − )2

2 2 } for x > 0.

µ   = exp (  +  2/2)
2 = exp[2  +  2][exp(  2) – 1]

xmode = exp[  – ].
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Random Variable Z
Normal distribution

Mean µZ and variance Z2

Random Variable X
Lognormal distribution

Mean µX and variance X2
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Figure 9.  Relation between the Normal and Lognormal Distribution

The Lognormal has two parameters that are the moments of the related
Normal distribution.

 = µz and = z.

The formula for the p.d.f. for the Lognormal distribution is given in terms of 

and This expression is useful for plotting the p.d.f., however, it is not helpful

for computing probabilities since it cannot be integrated in the closed form.  The
parameters of the three cases of Fig. 8 are shown in the Table 12.

Table 12. Distribution Parameters for Fig. 8

Case =µz = z µx x xmode

C1 1 1 4.48 5.87 1

C2 1.5 1 7.39 9.69 1.65

C3 2 1 12.18 15.97 2.72

For some cases, one might be given the mean and variance of the random
variable X and would like to find the corresponding parameters of the distribution.
Solving for  and  in terms of the parameters of the distribution underlying

Normal distribution
 2 = ln[( x2/µx2) + 1], and  = ln[µx] –  2 /2.
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The Lognormal distribution is a flexible distribution for modeling random
variables that can assume only nonnegative values.  Any positive mean and
variance can be obtained by selecting appropriate parameters.

For the example given at the beginning of this section, the given data
provides estimates of the parameters of the distribution of X,

µx = 2 and x2 = 1.

From this information, we compute the values of the parameters of the Lognormal
distribution.

  2 = 0.2231 or   = 0.4723,  and   = 0.6683.

P{X < 1} = 0.0786.

Approximately 8% of the particles will pass through the screen.

Exponential Distribution

Ex. 13.  Telephone calls arrive at a switch board with an average time between arrivals of 30
seconds.  Since the callers are independent, calls arrive at random.  What is the probability that
the time between one call and the next is greater than one minute?

The exponential distribution is often used to
model situations involving the random variable
of time between arrivals.  When we say that the
average arrival rate is , but the arrivals occur

independently, then the time between arrivals
has an exponential distribution.  The general

form has the single positive parameter . The density has the shape shown in Fig.
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Figure 10.  The Exponential Distribution

Exponential Distribution
Parameter: 

f(x) =  exp(– x)  for x > 0.

F(x) = 1 − exp(– x)  for x > 0.

µ   =   =1/   and 1 = 4.
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This density function is integrated to yield the closed form expression for the
c.d.f.  The distribution has equal mean and standard deviation, and the skewness
measure is always 4.  Because it is skewed to the right, the mean is always greater
than the median.  The probability that the random variable is less than its mean is
independent of the value of :  P(x < µ) = 0.6321.

For the example problem, we are given that the mean of the time between
arrivals is 30 seconds.  The arrival rate is therefore 2 per minute.  The required
probability is then

P(x > 1) = 1 - F(1) = exp(-2) = 0.1353.

The exponential distribution is the only memoryless distribution.  If an
event with an exponential distribution with parameter  has not occurred prior to

some time T, the distribution of the time until it does occur has an exponential
distribution with the same parameter.

The exponential distribution is intimately linked with the discrete Poisson
distribution.  When some process has the time between arrivals governed by the
exponential distribution with rate , the number of arrivals in some fixed interval

T is governed by the Poisson distribution with mean value equal to T.  Such a

process is called a Poisson process.

Gamma Distribution

Ex. 14.  Consider a simple manufacturing operation whose completion time has a mean equal to
ten minutes.  We ask, what is the probability that the completion time will exceed 11 minutes?
We first investigate this question assuming the time has an exponential distribution (a special case
of the Gamma), then we divide the operation into several parts, each with an exponential
distribution.

The Gamma distribution models a random variable
that is restricted to nonnegative values.  The general
form has two positive parameters r and  determining

the density function.   We restrict attention to integer
values of r although the Gamma distribution is defined
for noninteger values as well.

Fig. 11 shows several Gamma
distributions for different parameter values.  The
distribution allows only positive values and is skewed
to the right.  There is no upper limit on the value of the
random variable.  The parameter r has the greatest
affect on the shape of the distribution.  With r equal to
1, the distribution is the exponential distribution.  As r
increases, the mode moves away from the origin, and

Gamma Distribution
Parameters:  > 0 and r  > 0

f(x) = Γ(r)
( x) r–1exp(– x)  for x > 0.

Γ(r) is the Gamma function.

Γ(r ) = ⌡⌠
0

∞
 xr–1e–x dx .

When r is an integer,
Γ(r) = (r – 1)!

µ  = 
r 

 , 2 = 
r 
2 , xmode = 

r  – 1
 .
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the distribution becomes more peaked and symmetrical.  As r increases in the
limit, the distribution approaches the Normal distribution.

The Gamma distribution is used extensively to model the time required to
perform some operation. The parameter  primarily affects the location of the

distribution.  The special case of the exponential distribution is important in
queueing theory where it represents the time between entirely random arrivals.
When r assumes integer values, the distribution is often called the Erlang
distribution.  This is the distribution of the sum of r exponentially distributed
random variables each with the mean 1/ .  All the distributions in Fig. 11 are

Erlang distributions.  This distribution is often used to model a service operation
comprised of a series of individual steps.  When the time for each step has an
exponential distribution, the average time for all steps are equal, and the step
times are independent random variables, the total time for the operation has an
Erlang distribution.
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Figure. 11.  The Gamma Distribution

With integer r, a
closed form expression for the
cumulative distribution of the
Gamma allows easy computation

of probabilities.  The summation expression is the cumulative distribution of the
discrete Poisson distribution with parameter x.

In the example problem for this section, we have assumed that the mean
processing time for a manufacturing operation is 10 minutes and ask for the
probability that the time is less than 11 minutes.  First assume that the time has an
exponential distribution. The exponential distribution is a special case of the

Cumulative Distribution of the Gamma

P(X ≤ x) = F(x) = 1 – 
( x)k exp(− x)

k!k =0

r −1

∑ for x > 0.
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Gamma distribution with r equal to 1.  The given mean, 10, provides us with the
information necessary to compute the parameter .

µ  = 
1

 or  = 
1

= 0.1.

We compute (r = 1,  = 0.1):  = 10,   = 10, P(X < 11) = 0.6671

Now assume that we can divide the operation into two parts such that each
part has a mean time for completion of 5 minutes and the parts are done in
sequence. In this situation, the total completion time has a Gamma (or Erlang)
distribution with r = 2.  The parameter  is computed from the mean completion

time of each part, µ  = 5.

 = 
1

= 0.2.

We compute the results from the Gamma distribution.

For (r = 2,  = 0.2): = 10,   = 7.071, P(X < 11) = 0.6454.

Continuing in this fashion for different values of r with the parameters such that 

= r/ 10.

For (r = 10,  = 1):  = 10,   = 3.162, P(X < 11) = 0.6594.

For (r = 20,  = 2):  = 10,   = 2.236, P(X < 11) = 0.6940.

For (r = 40,  = 4):  = 10,   = 1.581, P(X < 11) = 0.7469.

As r increases, the distribution has less variance and becomes less skewed.

One might ask whether the Normal distribution is a suitable approximation
as r assumes higher values.  We have computed the probabilities for r = 20 and r
= 40 using a Normal approximation with the same mean and variance.  The
results are below.

For X Normal with (  = 10,   = 2.236): P(X < 11) = 0.6726.

For X Normal with (  = 10,   = 1.581): P(X < 11) = 0.7364.

It is apparent that the approximation becomes more accurate as r increases.

Beta Distribution

Ex. 15.  Consider the following hypothetical situation.  Grade data indicates that on the average
27% of the students in senior engineering classes have received A grades.  There is variation
among classes, however, and the proportion must be considered a random variable.  From past
data we have measured a standard deviation of 15%.  We would like to model the proportion of A
grades with a Beta distribution.
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The Beta distribution is important because
it has a finite range, from 0 to 1, making it
useful for modeling phenomena that cannot
be above or below given values.  The
distribution has two parameters, α and β,

that determine its shape.  When α and β are

equal, the distribution is symmetric.
Increasing the values of the parameters
decreases the variance.  The symmetric
case is illustrated in Fig. 12.
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Figure 12.  The Symmetric Case for the Beta Distribution.

When α is less than β the distribution is skewed to the right as shown in Fig. 13.

The distribution function is symmetric with respect to α and β, so when α is

greater than β, the distribution is skewed to the left.

The Uniform distribution is the special case of the Beta distribution with α
and β both equal to 1.  The density function has the constant value of 1 over the 0

to 1 range.  When α = 1 and β = 2, the resulting Beta distribution is a triangular

distribution with the mode at 0.

Beta Distribution
Parameters: α > 0 and β > 0.

f(x) = 
Γ(α + β)
Γ(α)Γ(β) x

α–1(1 – x)β–1  for 0 ≤ x ≤ 1.

µ   = 
α

α + β ,

2 =  
αβ

(α + β)2(α + β + 1)
 ,

xmode = 
− 1

+ − 2
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Figure 13.  The Beta Distribution as β increases for constant α.

A linear transformation of the Beta variable provides a random variable
with an arbitrary range.  The distribution is often used when an expert provides a
lower bound, a, upper bound, b, and most likely value, m, for the time to
accomplish a task.  A transformed Beta variable could be used to represent the
task time in a model.

With a linear transformation we
change the domain of the Beta distribution.
Assume X has the Beta distribution, and let

Y = a + (b – a)X.

The transformed distribution called, the
generalized Beta, has the range a to b.  The mean
and mode for the distribution are shifted
accordingly.  The mode of Y is the most likely
value, m, and relates to the mode of X as

xmode = 
− 1

+ − 2
= 

m − a

b − a
.

Given values of a, b and m, one obtains a relation between α and β.  Selecting a

value for one parameter determines the other.  Probabilities are calculated from
the Beta distribution.

Generalized Beta Distribution
Parameters: > 0, > 0, a, b

a < b

µ   = a + (b − a)
+

 
 
  

 
 

2 =  
(b − a)2

( + )2( + +1)

mode = a + (b − a)
− 1

+ − 2

 
 
 

 
 
 
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P{Y ≤ y} = P{X ≤ 
x − a

b − a
}.

The generalized Uniform distribution has an arbitrary range
from a to b.  Its moments are determined by specifying α and β
equal to 1.

We use the Beta distribution to model the
proportions of the example problem, since they are restricted to
values between zero and 1.  The example gives the average

proportion of A’s as 0.27.  The standard deviation is measured as 0.15.  To use
this data as estimates of µ  and , we first solve for β as a function of  and α.

β  = 
(1− )

.

Substituting  = 0.27 into this expression, we obtain: β = 2.7037α.

There are a variety of combinations of the parameters that yield the required
mean.  We use the given standard deviation to make the selection.  Table 13
shows the value of β and the standard deviation for several integer values of α.

Table 13.  Standard Deviation of the Beta Distribution
α 1 2 3 4 5 6 7 8 9 10
β 2.704 5.41 8.11 10.81 13.52 16.22 18.93 21.63 24.33 27.04

0.204 0.15 0.13 0.11 0.10 0.09 0.09 0.08 0.08 0.07

The standard deviation associated with α = 2 and β = 5.41 approximates the data.

With the selected model, we now ask for the probability that a class has more than
50% A grades.  A spreadsheet function provides the values of the c.d.f. for the
given parameters (α, β) = (2, 5.4074).  We find:  P{X > 0.5} =  0.0873.

Uniform Distribution
Parameters:  a < b

f(x) = 
1

b − a
 for a ≤ x ≤ b

µ  = 
a + b

2

2 =  
(b − a)2

12
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Weibull Distribution

Ex. 16.  A truck tire has a mean life of 20,000 miles.   A conservative owner decides to replace
the tire at 15,000 miles rather than risk failure.  What is the probability that the tire will fail before
it is replaced?  Assume the life of the tire has a Weibull distribution with  equal to 2.

This distribution has special meaning to
reliability experts, however, it can be
used to model other phenomena as well.
As illustrated in Fig. 14, the distribution
is defined only for nonnegative
variables and is skewed to the right.  It
has two parameters  and .

The parameter  affects

the form of the distribution, while for a
given , the parameter  affects the

location of the distribution.  The cases
of Fig. 14 have  adjusted so that each distribution has the mean of 1.  When  is

1, the distribution is an exponential.  As increases and the mean is held constant,

the variance decreases and the distribution becomes more symmetric.

0.00
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0.40

0.60

0.80

1.00

1.20

0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00

(Beta=1)

(Beta=2)

(Beta=3)

Figure 14.  The Weibull Distribution

Conveniently, the cumulative distribution has a closed form expression.

Weibull Distribution
Parameters: > 0, > 0

f(x) = x -1exp{- x } for x ≥ 0.

F(x) = 1 - exp{- x } for x ≥ 0.

  = -1/  Γ(1 + 
1

).

2 = -2/  {Γ(1 + 
2

) - [Γ(1 + 
1

)]2}.

xmode = 
− 1

.
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In reliability modeling, the random variable x is the time to failure of a
component.  We define the hazard function as

(x) = 
f (x)

1 − F(x)
.

For a small time interval ∆, the quantity (x)∆ is the probability that the

component will fail in the time interval {x, x + ∆}, given it did not fail prior to

time x.  The hazard function can be viewed as the failure rate as a function of
time.  For the Weibull distribution

(x) = x -1.

For  equal to 1, the hazard function is constant, and we say that the

component has a constant failure rate.  The distribution for time to failure is the
exponential distribution.  This is often the assumption used for electronic
components.

For  equal to 2, the hazard rate is increasing linearly with time.  The

probability of failure in a small interval of time, given the component has not
failed previously, is growing with time.  This is the characteristic of wear out.  As
the component gets older, it begins to wear out and the likelihood of failure
increases.  For larger values of  the hazard function increases at a greater than

linear rate, indicating accelerating wear out.

Alternatively for  less than 1, the hazard function is decreasing with time.

This models the characteristic of infant mortality.  The component has a high
failure rate during its early life; but when it survives that period, it becomes less
likely to fail.

For the example, we assume the truck tire has a mean life of 20,000 miles,
and we assume the life has a Weibull distribution with  equal to 2.  The owner

decides to replace the tire at 15,000 miles rather than risk failure.  We ask for the
probability that the tire will fail before it is replaced.

To answer this question, we see that the mean of the distribution is given
as 20 (measured in thousands of miles).  Since  is also specified, we must

compute  for the distribution.  The expression for the mean is solved for the

parameter  to obtain

 = 

Γ(1+
1

) 

 

 
 
 

 

 

 
 
 

.

Evaluating this expression for the given information we obtain
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 = 





Γ(1.5)

20  
2 

= 0.0019635.

Now to compute the required probability with these parameters

P{x < 15} = F{15} = F(x) = 1 - exp{- (15) } = 0.3571.

This result looks a little risky for our conservative driver.  He asks, how soon
must the tire be discarded so the chance of failure is less than 0.1?

To answer this question, we must solve for the value of x that yields a
particular value of F(x) (z = F-1(0.1)) .  Using the c.d.f. this is easily
accomplished.

z = 
-ln[1 - F(x)]

  =  
2 -ln[0.9]

0.001964  = 7.325. (21)

To get this reliability, the owner must discard his tires in a little more than 7000
miles.

Translations of the Random Variable

Ex. 17.  An investment in an income producing property is $1,000,000.  In return for that
investment we expect a revenue for each year of a 5 year period.  The revenue is uncertain
however.  We estimate that the annual revenues are independent random variables, each with a
Normal distribution having a mean of $400,000 and a standard deviation of $250,000.  Negative
values of the random variable indicate a loss.  We evaluate the investment by computing the net
present worth of the cash flows using a minimum acceptable rate of return (MARR) of 10%.

Say the amount of the income in year t is R(t) and the MARR is i.  Assuming
discrete compounding and end of the year payments, the present worth for the
cash flow at year t is

PW(t) = 
R(t)

(1+ i)t .

With the initial investment in the amount I the Net Present Worth for a property
that lasts n years is

NPW = − I +
R(t)

(1+ i)t
t=1

n
∑ .

A NPW greater than 0 indicates that the rate of return of the investment in the
property is greater than the MARR and it is an acceptable investment.  The
problem here is that the revenues are independent random variables, so the NPW
is also a random variable.  The best we can do is compute the probability that the
NPW will be greater than 0.  Although the annual revenues all have the same



Continuous Random Variables 20

distributions they are linearly translated by the factor 1/(1 + i)t, a factor that is
different for each year.

We use the following general results to deal with this situation.  Say we
have the probability distribution of the random variable X described by fX(x) and
FX(x).  We know the associated values of the mean ( X), variance ( X

2) and the

mode (xmode) of the distribution.  We are interested, however, in a translated
variable

Y = a + bX,

where a is any real number and b is positive.  We want to compute probabilities
about the new random variable and state its mean, variance and mode.

Probabilities concerning Y are easily computed from the cumulative
distribution of X.

FY(y) = P{Y ≤ y} = P{X ≤ 
y − a

b
} = FX(

y − a

b
).

The mean, variance and mode of Y are respectively

Y = E{Y} = E{a + bX} = a + b X.

Y
2 = E{(Y - Y)2 } = b2

X
2 or Y = b X.

ymode = a + bxmode

To use these results for the example problem, we note that the present
worth factors are a linear translation with

a = 0 and b = 1/(1 + i)t.

Thus the contribution of year t to the net present worth is a random variable with:
 = 400/(1 + i)t and  = 250/(1 + i)t.  We use three facts to continue: the sum of

independent random variables with Normal distributions is also Normal, the mean
of the sum is the sum of the means, and the variance of the sum is the sum of the
variances. We conclude that the NPW has a Normal distribution with

 = -1000 + 400/(1+ i)t

t=1

5
∑  = 516.3

and  = 250 
1

(1+ i)t

 
 
  

 
 

2

t=1

5
∑  = 427.6.

Based on these parameters and using i = 10%: P(NPW < 0) = 11.4%.  It is up to
the decision maker to decide whether the risk is acceptable.
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Modeling

To model a continuous random variable for analytical or simulation studies, some
distribution must be selected and parameters determined.  Logical considerations
and statistical analysis of similar systems can guide the selection.

When independent random variables are summed, the Normal distribution
is the choice when the individuals have Normal distributions, and the Erlang
distribution (a special case of the Gamma) is the choice when the individuals have
exponential distributions.  When a large number of random variables are summed
that are of approximately the same magnitude, the Normal distribution is often a
good approximation.

A disadvantage of the Normal distribution is that it allows negative values.
Where the mean is not much larger than the standard deviation this might be a
problem when the random variable is obviously nonnegative.  Of course, time is a
prime example where negativity is a logical impossibility.  Here we have the
Lognormal, Gamma and Weibull distributions that restrict the random variable to
positive values.  These distributions also exhibit the asymmetry that might be
present and important in practice.  The Weibull distribution is important to
reliability theory when failure rate information is available.

When the physical situation suggests both upper and lower bounds, the
uniform, triangular, and generalized Beta distributions are available.  The uniform
distribution has only the bounds as parameters, and might be used where there is
no other information.  The triangular distribution has a third parameter, the mode,
and is used for cases when one estimates the most likely value for the random
variable in addition to its range.  The generalized Beta is very flexible with are
large variety of shapes possible with a suitable selection of parameters.


