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Probability Models.S1
Introduction to Probability
The stochastic chapters of this book involve random variability.  Decisions are to be
made, but the response to the system is not known with certainty.  A principal tool for
quantitative modeling and analysis in this context is probability theory.   Even though a
system response is uncertain, specifying probabilities of the various possible responses
will assist decision making.

Ex. 1.  A Gambling Example

The Game of Craps

This is your first trip to Las Vegas and you are thinking about trying out the gaming
tables.  As a student, you don’t have much money, so you’re a little afraid of diving right
in.  After all, the minimum bet is $5, and it won’t take many losses before your gambling
budget of $100 is exhausted.  You are looking forward to a good time, but the uncertainty
and risk involved is unsettling.

The hotel has a special channel on the television that helps you learn the rules.  You turn it
on, and they are discussing the game of Craps.   In this game, the player rolls a pair of
dice and sums the numbers showing.  A sum of 7 or 11 wins for the player, and a sum of
2, 3, or 12 loses.  Any other number is called the point.  The player then rolls the dice
again.  If she rolls the point number, she wins.  If she throws a 7, she loses.  Any other
number requires another roll.  The game continues until the gambler rolls a 7 or her point
number.

Before going downstairs to the tables, you decide to do a little analysis.  Perhaps that
probability course you took in college will finally bear fruit.  You are familiar with dice,
so with a little thought you determine the probabilities of the possible results of the roll of
a pair of dice and construct the table below.

Table 1.  Probabilities for a throw of two dice
Sum 2 3 4 5 6 7 8 9 10 11 12

Probability 1/36 2/36 3/36 4/36 5/36 6/36 5/36 4/36 3/36 2/36 1/36
Cumulative 1/36 3/36 6/36 10/36 15/36 21/36 26/36 30/36 33/36 35/36 36/36

The activity that results in some uncertain outcome is an
experiment, and some number observed or computed from the outcome is
a random variable.  The current experiment is throwing a pair of dice, and
the random variable is the sum of the numbers facing up.  The table
showing the possible values of the random variable and their probabilities
constitutes the model of the situation regarding the throwing of two dice.
Games of chance are interesting examples, because experiments or logical
arguments easily verify the probabilities describing the model.
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The table row called labeled “sum” provides the possible
observations of the random variable.  The sum is a discrete random
variable.  The set of possible values is

X = {2, 3, … , 12}.

The row labeled probability shows the chance that a single throw results in
each of the various possible values of the random variable.  The collection
of probabilities is probability distribution function  (p.d.f.) of the random
variable.  Assign the notation PX(k) to represent the probability that the
random variable X  takes on the value k.   Probabilities are always
nonnegative, and their sum over all possible values of the random variable
must be 1.

The cumulative distribution function (c.d.f.) describes the
probability that the random variable is less than or equal to a specified
value.  The value of the cumulative distribution function at b is

FX (b) = PX (k)
k≤b
∑

We drop the subscript x on both PX and FX when there is no loss of clarity.

The distributions for this situation are graphed in Fig. 2.  The p.d.f.
has the value 0 at x =1, rises linearly to a peak at x= 7, and falls linearly to
the value of 0 at x = 13.  The function is called a triangular distribution.
The c.d.f. shown in Fig. 2 has the typical pattern of all functions of this
type, starting at 0 and rising until it reaches the value of 1.  The function
remains at 1 for all values greater than 12.  For the discrete random
variable, the p.d.f. has nonzero values only at the integers, while the c.d.f.
is defined for all real values.
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Figure 2.  Distribution functions for total on dice (Triangular Distribution)

Computing Probabilities of Events

With the probability distribution in hand, you easily compute the probability that you will
win or lose on the first throw of the dice.  Since the possible values are mutually
exclusive, you simply add the probabilities to find the probability of win or lose.

P(win) = P(7) + P(11) = 6/36 + 2/36 = 0.222
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P(lose) = P(2) + P(3) + P(12) =1/36 + 2/36 +1/36 = 0.111

The odds look good, with the probability of a win equal to twice that of a loss.  You
confidently head toward the tables.  Unfortunately, the game does not go well, and you
lose a good deal of your fortune.  Perhaps your analysis stopped a little early.  We
continue this example later to find a better estimate of your chances of winning this game.

An event is a subset of the outcomes of an experiment. Event probabilities
are computed by summing over the values of the random variable that
make up the event.  In the case of the dice, we identified the event of a
“win” as the outcomes 7 and 11.  The probability of a win is the sum of
the probabilities for these two values of the random variable.

In many cases events are expressed as ranges in the random
variable.  In general, the probability that the discrete random variable falls
between a and b  is

P(a ≤ x ≤ b) = Px(k )
k =a

b

∑  = PX(k)
k =0

b

∑  - PX(k)
k =0

a−1

∑
= Fx(b) - Fx(a - 1) for a ≤ b.

Range event probabilities are computed by summing over the values of the
random variable that make up the event or differencing the cumulative
distribution for the values defining the range.

For discrete random variables, the relation ≤ is different than the
relation < since a nonzero probability is assigned to a specific value.
Another useful expression comes from the fact that the total probability
equals 1.

P(x ≥ a) = 1 - Fx(a - 1).

To illustrate, several events for the dice example appear in Table 2.
The random variable, x, is the sum of the two dice.  The examples show
how different phrases are used to describe ranges.  The values of the
cumulative distribution come from Table 1.

Table 2.  Simple Range Events
Event Probability
The sum on the dice is less than 7. P(x < 7) = P(x ≤ 6) = Fx(6) = 15/36.
The sum is between 3 and 10 inclusive. P(3 ≤ x ≤ 10) = Fx(10) - Fx(2) = 32/36.
The sum is more than 7. P(x > 7) = 1 - P(x ≤ 7) = 1 - Fx(7) = 15/36.
The sum is at least 7. P(x ≥ 7) =  1 - Fx(6) = 21/36.
The sum is no more than 7. P(x ≤ 7) = Fx(7) = 21/36.
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Combinations of Events

Based on the results of the first night’s play, you feel that you were a little rash
considering only the probability of winning or losing on the first roll of the dice.  In fact,
most of your loses occurred when didn’t roll a winning or losing number and were forced
to roll for a point.  You must roll for a point if the first roll is between 4 and 6 or between
8 and 10.  You define the event A as the outcomes {4 ≤ x ≤ 6} and the event B as the
outcomes {8 ≤ x ≤ 10}.  Using the rules of probability you determine that

P(A) = F(6) - F(3) = 15/36 - 3/36 = 1/3;

P(B) = F(10) - F(7) = 33/36 - 21/36 = 1/3.

The probability that you must roll a point is the probability that either event A or event B
occurs.  This is the union of these two events (written A ∪ B).  Again from your

probability course you recall that since the events are mutually exclusive, the probability
of the union of these two events is the sum of their probabilities.

P(throw a point ) = P(A∪B) = 1/3 + 1/3 = 2/3.

Together win, lose and throw a point represent all possibilities of the first roll, so it is not
surprising that

P(win) + P(lose) + P(throw a point) = 0.222 + 0.111 + 0.667 = 1.

Events are sets of outcomes so we use set notation such as A and B to
identify them.  The union is two events, that is the outcomes in either A or
B, is written A∪B.  The intersection of two events, that is the set of

outcomes in both events A and  B, is written A∩B.

When two events are mutually exclusive they have
no outcomes in common, and the probability of
their union is the sum of the two event
probabilities as illustrated above.

When the events are not mutually exclusive, we
have the more general expression where P(A∩B),

is the probability that both events occur.  For example, let A = {roll less
than 8} and B = {roll more than 6}.  We compute

P(A) = F(7) = 21/36, P(B) = 1 - F(6) = 1 - 15/36 = 21/36.

To compute the probability of the union, we must first find the probability
of the intersection event P(A∩B) = P(7) = 6/36.  Using the general

expression for the union we find

P(A) + P(B) - P(A∩B) = 21/36 + 21/36 -  6/36 = 1.

Indeed the union of these two events includes all possible outcomes.

If A and B are mutually
exclusive,

P(A∪B) = P(A) + P(B).

Probability of the union of any two events is
 P(A∪B) = P(A) + P(B) - P(A∩B).
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Two events are independent if the occurrence of one
does not affect the probabilities associated with the
other.  As an example, we might be interested in the
probability that two sixes are thrown for a pair of
dice.  The results of the two throws are independent,
and we compute

P({six on first}∩{six on second})

= P(six on first)P(six on second)

= (1/6)(1/6) = 1/36.

When events are not independent, they are related by conditional
probabilities.  Consider the events:  A = {roll a 4 on the first play}, B =
{win the game}.  These events are not independent because the probability
of winning depends on whether or not we roll a 4.  We can however define
the conditional probability of winning given that a 4 is rolled on the first
play, written P(B | A).  To compute this probability, we assume we have
rolled a point of 4.  On the second roll, the probability that we win, given
that the game ends is

P(roll a 4)/[P(roll a 4) + P(roll a 7)] = 1/3.

We can’t say how many rolls it will take, but this
probability remains the same throughout the
remainder of the game, so we conclude that

P(B | A) = P(win the game / roll a 4 on the first play)
= 1/3.

We use the general formula for computing the
intersection probability

P(A∩B) = (3/36)(1/3) = 1/36.

You now have enough tools to complete the analysis of the game.
Consider an experiment that is a single complete play of the game.  You
define the following events:

W:  Win the game

L: Lose the game

W1: Win on first roll. P(W1) = 2/9

Pike :  Throw a point of k on the first roll, k = 4, 5, 6, 8, 9, 10.

The probabilities associated with the events are:

The probabilities of the
intersection of independent

events is
P(A∩B) = P(A) P(B).

The probability of the union of
independent events is

P(A∪B) = P(A) + P(B) - P(A) P(B).

The general expression for the
intersection probability is
P(A∩B) = P(A) P(B | A) .

For independent events,
P(B | A) = P(B) and P(A | B) = P(A).
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P(P4) = 3/36, P(P5) = 4/36, P(P6) = 5/36, P(P8) = 5/36,

P(P9) = 4/36, P(P10) = 3/36.

The conditional probabilities, P( W |Pike), probability of a win given a
point of k on the first roll.

P(W |P4) = 1/3, P(W |P5) = 4/10, P(W |P6) = 5/11, P(W |P 8) = 5/11, P(W |P
9) = 4/10, P(W |P 10) = 1/3.

The event of winning the game combines all possible winning
combinations of events.

W = W1∪(P4∩W4)∪(P5∩W5)∪(P6∩W6)∪(P8∩W8)

∪(P9∩W9)∪(P10∩W10)

P(W) = P(W1) + P(P4) P(W|P 4) + P(P5) P(W|P 5) + P(P6) P(W|P 6)

+ P(P8) P(W|P 8) + P(P9) P(W|P 9) + P(P10) P(W|P 10)

P(W) = 0.493.

If you don’t win you lose, so P(L) = 1 - P(W) = 0.507.

Your chances of winning on any one play are slightly less than
50%.  You now know that the casino has a better chance of winning the
game than you, and that if you play long enough you will lose all your
money.  If this were an economic decision, your best bet is not to play the
game.  If you do decide to play, you go to the tables armed with the
knowledge of your chances of winning and losing.  The probability model
has changed the situation to one of risk rather than uncertainty.  You can
use the probability model to answer many other questions about this game
of chance.
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Ex. 2.  An Example from Manufacturing

You are an machine operator and have recently been promoted to be in charge of two
identical machines in a production line.  You just received your first performance review
from the supervisor.  The report is not good and it ends with the comment,

“Your station fails in both efficiency and work-in-process.  You are inconsistent in your
work habits.  At times you sit idle and at other times waiting work is overflowing from
your station.  A work study has determined that you have sufficient capacity to do all the
work assigned.  It’s hard to imagine how you can fail to complete all your work, have idle
time and excess work-in-process.  If you don’t improve, we’ll have to reevaluate your
promotion.”

You throw down the review in anger, blaming the station that comes
before yours as not providing the work on a regular basis.  You also blame
the maintenance department for not keeping your machines in good shape.
They often require frequent adjustments and no two jobs take the same
time.  You also complain about the production manager who takes work
away from you and gives it to another station whenever the number
waiting exceeds 6 jobs.  After you cool down you pledge to yourself to try
to improve.  You really need this job and the extra pay it provides.

You visit the industrial engineering department and ask for some
ideas to improve your efficiency.  The engineer listens to your problem
and points out that perhaps the situation is not your fault.  He explains that
variability in the arrival process and machine operation times can result in
both queues and idleness.  Using data from the work study he determines
that you are assigned an average of 50 jobs per week and that each job
takes an average of 1.4 hours for a total work load of 70 hours per week.
With two machines working 40 hours per week, you have a production
capacity of 80 hours, sufficient time to do the work assigned.  As a first
attempt at modeling your station, the engineer uses a queueing analysis
program and finds the following probability distribution for the number of
jobs that are at your station.

Number 0 1 2 3 4 5 6 7 8
Probability 0.098 0.172 0.15 0.131 0.115 0.101 0.088 0.077 0.067
Cumulative 0.098 0.27 0.42 0.552 0.667 0.767 0.855 0.933 1.

The table does give some interesting insights.  The model predicts
that you are idle almost 10% of the time ( when the number in the system
is 0).  About 7% of the jobs entering the station will find all six queue
positions full (when the number in the system is 8).  Since these jobs are
sent to another operator, the number of jobs actually processed in your
station is 50*(1 - 0.067) = 46.63.  Between three and four jobs per week
are taken away from you because of congestion at your station.  The
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remaining jobs require an average of 46.63*1.4 = 65.3 hours per week.
Since your machines have 80 hours of capacity, their efficiency is 65.3/80
= 82%.  The work-in-process (WIP) is the expected number of jobs in the
station.  Using probability theory you calculate the expected value for the
number of jobs as

 = kPx(k)
k=0

8

∑  = 0*0.098 + 1*0.172 + 2*0.15 … + 8*0.067 = 3.438.

You are not very encouraged by these results.  They clearly
support your supervisor’s opinion that you are simultaneously inefficient,
lazy, and generally not doing your job.  The kindly engineer consoles you
that the results are the inevitable cause of variability.  You can do nothing
about the situation unless you can reduce the variability of the arrivals of
jobs to your station, the variability of the processing times or both.  If
these factors are beyond your realm of control, you better try to convince
your supervisor that the problem is not your fault and that he should look
elsewhere for solutions.

Both the gambling and manufacturing examples illustrate the use
of probability models to learn more about situations.  The gambling
example illustrates a case where the underlying causes of variability are
well known and the analysis yields accurate estimates about the
probabilities of winning and losing.  The model for the manufacturing
example rests on arguable assumptions and the results may not be
accurate.  The model is valuable however, in that it illustrates an aspect of
the situation often not apparent to decision makers.  The results indicate
that random variability is the source of the problem and should stimulate
the search for new solutions.


