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Simulating Random Variables

In the fashion of the last several sections, we will often create probability models of
certain aspects of systems. For simple cases, we compute probabilities of events using
probability theory. Inthe remainder of this book, we will find other situations that are
affected by more than one random variable. Because of their complexity, however, many
problems will not yield to easy analysis. Rather, it is necessary to simulate the several
random variables that impact the situation and observe and analyze their effects through
statistical analysis. The approach iswidely used in operations research. We begin the
discussion of simulation in this section and carry it throughout the rest of the book. In
addition to its power as atool for analyzing complex systems, simulation provides a
medium for illustrating the ideas of variability, uncertainty and complexity. We construct
asimulated reality and perform experiments on it.

A Production Process

Ex. 18. Consider an assembly process with three stations. Each station produces a part,
and the three parts are assembled to produce a finished product. The stations have been
balanced in terms of work load so that each has an average daily production equal to ten
units. The production of each station is variable, however, and we have established that
the daily production in a station has a discrete uniform distribution ranging from 8 to 12.
Work in process cannot be kept from one day to the next, so the production of the lineis
equal to the smallest station production. Let X1, Xp, and X3 be random variables that are
the production amounts of the three stations. The daily production of the line is a random
variable, Y, such that: Y = Min{ X1, X, X3}. Our interest islearning about the distribution
of the random variable Y.

The dedicated student may be able to derive the p.d.f. of Y given
thisinformation, however, we will take the conceptually easier approach
of smulation. We observein Table 15 ten days of simulated operation.
The production in each station is simulated! using the methods described
later in this chapter. With these observations we compute the simulated
production of theline as

y = Min{x1, X2, X3} .

1The observations were simulated by: xj = ROUND(7.5 + 5r). This provides a discrete uniform
distribution with integer values 8 through 12.
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Table 15. Smulated Observations

X1 11 10 8 11 9 12 8 11 12 9
X2 12 10 10 12 8 9 8 9 10 9
X3 9 8 8 9 9 12 12 9 10 10
y 9 8 8 9 8 9 8 9 10 9
The simulation provides information about the system. The statistical
mean and standard deviation for the system production is
¥ = =8.7, = 0.4556, s = 0.6749.

We conclude that the average daily production of the system is
well below the average of the individual stations. The cause of this
reduction in capacity is variability in station production.

Since the statistics depend on the specific simulated observations,
the analyst usually runs replications of the simulation to learn about the
variability of the simulated results. The table below shows six replications
of this experiment. Although the results do vary, they stay within a
narrow range. Our conclusion about the reduction in the system capacity
Is certainly justified.

Replication 1 2 3 4 5 6
y| 87 8.6 9.1 9 8.8 8.8
Sample Statistics The grand average and the standard deviation of
The mean: the six observationsis 8.833 and 0.186, respectively. Since
y= é” v I each of the replication averages are determined by the sum of
i=1 ' ten numbers, we can conclude from the Central Limit Theorem

The Qmp| evariance: that the average observations are approximately Normally

¢ —a(y| Y

distributed. This allows anumber of additional statistical tests
/(n 1) | ontheresults of the simulation replications.

The standard deviation: Simulation is a very powerful tool for the

s=\g

analysis of complex systemsinvolving probabilities and
random variables. Virtually any system can be simulated to

obtain numerical estimates of its parameters when itslogic is understood
and the distributions of its random variables are known. The approach
will be used extensively in the following chapters to illustrate the
theoretical concepts, aswell asto provide solutions when the theoretical
results are not available or too difficult to apply.
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Simulating with the Rever se Transfor mation Method

The conceptually simplest way to simulate a random variable, X, with
density function, fx(x), is called the reverse transformation method. The
cumulative distribution function is Fy(x).

Let R be arandom variable taken from a uniform distribution
ranging from O to 1, and let r be a specific observation in that range.
Because R is from a uniform distribution

P{REr} =r.

Let the simulated value xs be that value for which the c.d.f., F(Xs), equals
r.

r =F(xg) or xs= F(r).

The random observation is the reverse transformation of the c.d.f., thus
providing the name of the method. The processisillustrated for the
examplein Fig. 14 where we show the c.d.f for the production in a station.
Say we select the random number 0.65 from a continuous uniform
distribution. We locate 0.65 on the F(x) axis, project to the cumulative
distribution function (the dotted line), and find the value of the random
variable x, for which F(x) = 0.65. For thisinstance x,=11.
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Figure 14. The reverse transformation method for a discrete distribution.

Table 16 shows the random numbers that provided the observations of
Table 15.
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Table 16. Random Numbers
1 2 3 4 5 6 7 8 9 10
1 ]0.6151|0.5569( 0.18 |0.7291|0.3046| 0.869 |0.1611|0.6633|0.9535|0.3298
2 0.861 | 0.5541|0.4883| 0.983 | 0.1391| 0.251 | 0.1389|0.3261|0.5123|0.3793
3 [0.3108|0.0923| 0.141 | 0.3124|0.2558|0.9785|0.9638| 0.3351 | 0.5778| 0.4323

Discrete Random Variables

To illustrate the reverse transformation method for a discrete random
variable, consider the binomial distribution withn=3and p=0.9. The
p.df.is:

Py = 2 9(0.9) k (0.1)% for k=012, 3.

Table 17 shows the probabilities associated with this distribution.

We next define intervals on the real number line from O to 1 for the
possible values of the random variable. Theintervals are computed using
the cumulative distribution. In general, whenr isareal number and xisa
finite discrete random variable, theintervals are

I(K) = {r | Fe(k—1) <t < F(K)} k=0,1,2, ... .

For the example case the intervals are shown in Table 17.

Table 17. Smulation Intervals for Binomial Distribution withn=3, p=0.9.

Kk 0 1 2 3
P(K) 0.001 0.027 0.243 0.729
F(K) 0.001 0.028 0.271 1.000
[ (K) 0- 0.001 0.001-0.028 | 0.028-0.271 0.271-1.0

To simulate an observation from the distribution, we select a
random number and determine the simulation interval in which the
random number falls. The corresponding value of k is the ssmulated
observation. For instance, using the random number 0.0969, we find that
0.0969 isin therange 1 (2). The simulated observationisthen 2. In

% = {k|Fx(k-1) <rj <Fx(K)}.

Six simulated values are shown in Table 18.

genera, let ri be arandom number drawn from a uniform distribution in
therange (0, 1). The simulated observation is
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Table 18. Random Numbers and Smulated Values

Random 0.0969 0.2052 0.0013 0.2637 0.6032 0.5552
Number
Simulated 2 2 1 2 3 3
Observation

Based on a sample of 30 observations, the sample mean, variance
and standard deviation are computed and shown in Table 19. We aso
estimate the probabilities of each value of the random variable from the
proportion of times that value appears in the data. The sample results are
compared to the population values in the table.

Table 19. Distribution Information Estimated from the S mulation

Mean 2.667 2.7
Variance 0.2989 0.27
Standard Deviation 0.5467 0.5196
P(0) 0 0.001
P(1) 0.0333 0.027
P(2) 0.2667 0.243
P(3) 0.7 0.729

Estimated from Sample Population Value

The statistics obtained from the sample are estimates of the
population parameters. If we simulate again using a new set of random
numbers we will surely obtain different estimates. Comparing the
statistics to the population values we note that the statistical mean and
variance are reasonably close to the population parameters that they
estimate. We did not observe any values of 0 from the sample. Thisis not
surprising as the probability of such an occurrence is onein athousand,
and there were only 30 observations.
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Continuous Random Variables

Ex. 19. A particular job consists of three tasks.
simultaneously. Task C can begin only when both tasks A and B are complete. The times
required for the tasks are T,, Tg, and T, respectively, and al times are random variables.
T, has an exponential distribution with a mean of 10 hours, T has a uniform distribution
that ranges between 6 and 14 hours, and T has a Normal distribution with a mean of 10
hours and a standard deviation of 3 hours. The time to complete the project, VY, is a
random variable that depends on the task times as

Y=Max.{ T, Tg} +T¢.
What is the probability that the promised completion time of 20 hoursis met.

Tasks A and B are to be done

An analytical solution to this problem would be difficult because the
completion timeis a complex combination of random variables.
Simulation provides statistical estimates concerning the completion time,

Table 20 shows the results for 10 ssmulations. The row labeled r

provides the random numbers used to simulate the random variables and
the rows labeled t,, t; and t, show the associated observations. The row
labeled y is computed using the system equation and the observations in
each column. The process of producing the simulated observations are

described in the following.

Table 20. Smulated results for the example problem
1 2 3 4 5 6 7 8 9 10
r 0663 0979 0256 0312 0141 0092 0311 0251 0.139 0.983
t, | 1089 3841 2954 3745 152 0968 3722 289 1497 40.76
r 0953 033 0139 0326 0512 0379 0964 0335 0578 0432
ts | 1363 8.638 7111 8609 101 9.034 1371 8681 10.62 9.459
r 0731 0615 0557 018 0.729 0305 0.869 0861 0.554 0.488
t- | 11.85 10.88 1043 7.253 11.83 8466 1336 1325 1041 9.912
y | 2548 4928 1754 1586 2193 175 2707 2194 2103 50.67

Closed Form Smulation

We continue to use the reverse transformation method to simulate
continuous random variables. For continuous variables, however,
probabilities do not occur at discrete values. Rather we have the c.d.f. that
gives probabilities

Itis clear from the ten completion timesin Table 20, that thereis quite a
bit of variability in an estimate of the time to complete the project. There
are 3 numbers below 20, so aninitial estimate of the probability of a
completion time less than 20 would be 0.3. A much larger sample would
be necessary for an accurate determination.
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P{X<x} =F(X)
The process for generating random follows.
»  Select arandom number r from the uniform distribution.
« Findthevaue of x for whichr = F(X) or x = F-(r).
* Theresulting x is the smulated value.

For some named distributions we have a closed form functional
representation of the c.d.f., while for others we must use a numerical
procedure to find the inverse probability function. When we have a closed
form expression for the c.d.f. that can be solved for x givenr, the
simulation procedure is easily performed. For example consider the
exponential distribution for task A. The mean of 10 hours yields the
parameter A = 0.1. The general form of the p.d.f. is

f(x) = Aexp(-Ax) and F(x) = 1 -exp(-Ax) for x 3 0.
Setting the cumulative distribution equal to r and solving we obtain
r=21-exp(-Ax) or x=- (LA) In(1-r).
Thefirst line labeled r in Table 20 is used to smulate T,, shown in the
following line. For example when
r =0.663, t, =-10In(1 - 0.663) = 10.89.

The uniform distribution associated with Ty is also simulated with
aclosed form expression. The c.d.f. for auniform distribution ranging
fromatobis

F(X)=(x-a)/(b-a)foraf x£b.
Setting r equal to the c.d.f. and solving form x yields the simulated value
x=a+r(b-a).

To illustrate, we compute the first smulated value of T, using the random
number r = 0.953.

t, = 8+ 0.953(14 - 8) = 13.63.

The Welbull distribution also allows a closed form simulation. We
set the expression for the c.d.f. equal to the random number

r=F(x) =1 - exp{-axB} forx3 0.

Solving for x, we obtain the expression for the simulated random variable

B [n[t-
= In[1 r].
o
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We recognize that when r is arandom number from therangeOto 1, (1 -
r) isaso arandom number from the same range. Thissimplifiesthe
expression for the simulated observation to

B [in(

(04

Smulation using Inverse Probability Functions

When a closed form expression is not available for the cumulative
distribution, a computer program may be used to numerically compute the
inverse probability function. For the example we used the inverse Normal
distribution function available with the Excel spreadsheet program to
simulate the observations from T.. To simulate we must find

te = F(r)
where F(r) is the inverse probability function for the Normal distribution
with mean 10 and standard deviation 3 evaluated for the valuer. Fig. 15

illustrates the reverse transformation in the case where arandom number
equal to 0.731 yieldst. equal to 11.85.
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Figure 15 The reverse transformation method for a Normal distribution

We compl ete the first column of the example by computing y with
the equation defining the interaction between the random variables.

y = Max(10.89, 13.63) + 11.85 = 25.48.
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Using Simulation to Solve Problems

The main purpose for simulation is to analyze problemsinvolving
combinations of random variables that are too complex to be conveniently
analyzed by probability theory.

Simulation is avery powerful tool for the analysis of complex
systems involving probabilities and random variables. Virtually any
system can be simulated to obtain numerical estimates of its parameters
when itslogic is understood and the distributions of its random variables
are known. The approach is used extensively in the practice of operations
research.

Simulation does have its disadvantages however. Except for very
simple systems, ssimulation analysis is computationally expensive. Inverse
probabilities functions that do not have a closed form may be difficult to
compute and complex systems with many random variables will use
computer time. Simulation results are statistical. One selection of random
variables yields a single observation. Since most situations involve
variability, it is necessary to make alarge number of observations and use
statistical techniques for drawing conclusions. Simulation results are
sometimes difficult to interpret. Thisis partly due to the complexity of
many simulated situations and partly due to their inherent variability.
Effects may be observed, but causes are difficult to assign.




