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Probability Models.S4
Simulating Random Variables
In the fashion of the last several sections, we will often create probability models of
certain aspects of systems.  For simple cases, we compute probabilities of events using
probability theory.  In the remainder of this book, we will find other situations that are
affected by more than one random variable.  Because of their complexity, however, many
problems will not yield to easy analysis.  Rather, it is necessary to simulate the several
random variables that impact the situation and observe and analyze their effects through
statistical analysis.  The approach is widely used in operations research.  We begin the
discussion of simulation in this section and carry it throughout the rest of the book.  In
addition to its power as a tool for analyzing complex systems, simulation provides a
medium for illustrating the ideas of variability, uncertainty and complexity.  We construct
a simulated reality and perform experiments on it.

A Production Process

Ex. 18.  Consider an assembly process with three stations.  Each station produces a part,
and the three parts are assembled to produce a finished product.  The stations have been
balanced in terms of work load so that each has an average daily production equal to ten
units.  The production of each station is variable, however, and we have established that
the daily production in a station has a discrete uniform distribution ranging from 8 to 12.
Work in process cannot be kept from one day to the next, so the production of the line is
equal to the smallest station production.  Let X1, X2, and X3 be random variables that are
the production amounts of the three stations.  The daily production of the line is a random
variable, Y, such that:  Y = Min{X1, X2, X3}.  Our interest is learning about the distribution
of the random variable Y.

The dedicated student may be able to derive the p.d.f. of Y given
this information, however, we will take the conceptually easier approach
of simulation.  We observe in Table 15 ten days of simulated operation.
The production in each station is simulated1 using the methods described
later in this chapter.  With these observations we compute the simulated
production of the line as

y = Min{x1, x2, x3}.

                                                
1The observations were simulated by:  xi = ROUND(7.5 + 5r).  This provides a discrete uniform
distribution with integer values 8 through 12.
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Table 15.  Simulated Observations
x1 11 10 8 11 9 12 8 11 12 9

x2 12 10 10 12 8 9 8 9 10 9

x3 9 8 8 9 9 12 12 9 10 10

y 9 8 8 9 8 9 8 9 10 9

The simulation provides information about the system.  The statistical
mean and standard deviation for the system production is

y =  = 8.7, s2= 0.4556, s = 0.6749.

We conclude that the average daily production of the system is
well below the average of the individual stations.  The cause of this
reduction in capacity is variability in station production.

Since the statistics depend on the specific simulated observations,
the analyst usually runs replications of the simulation to learn about the
variability of the simulated results.  The table below shows six replications
of this experiment.  Although the results do vary, they stay within a
narrow range.  Our conclusion about the reduction in the system capacity
is certainly justified.

Replication 1 2 3 4 5 6
y 8.7 8.6 9.1 9 8.8 8.8

The grand average and the standard deviation of
the six observations is 8.833 and 0.186, respectively.  Since
each of the replication averages are determined by the sum of
ten numbers, we can conclude from the Central Limit Theorem
that the average observations are approximately Normally
distributed.  This allows a number of additional statistical tests
on the results of the simulation replications.

Simulation is a very powerful tool for the
analysis of complex systems involving probabilities and
random variables.  Virtually any system can be simulated to

obtain numerical estimates of its parameters when its logic is understood
and the distributions of its random variables are known.  The approach
will be used extensively in the following chapters to illustrate the
theoretical concepts, as well as to provide solutions when the theoretical
results are not available or too difficult to apply.

Sample Statistics
The mean:

y = yi
i=1

n
∑ n

The sample variance:

s2 = (yi − y )2

i=1

n
∑ (n − 1)

The standard deviation:

s = s2  
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Simulating with the Reverse Transformation Method

The conceptually simplest way to simulate a random variable, X, with
density function, fX(x), is called the reverse transformation method.  The
cumulative distribution function is FX(x).

Let R be a random variable taken from a uniform distribution
ranging from 0 to 1, and let r be a specific observation in that range.
Because R is from a uniform distribution

P{R ≤ r} = r.

Let the simulated value xs be that value for which the c.d.f., F(xs), equals
r.

r  = F(xs) or xs = F-1(r).

The random observation is the reverse transformation of the c.d.f., thus
providing the name of the method.  The process is illustrated for the
example in Fig. 14 where we show the c.d.f for the production in a station.
Say we select the random number 0.65 from a continuous uniform
distribution.  We locate 0.65 on the F(x) axis, project to the cumulative
distribution function (the dotted line), and find the value of the random
variable xs for which F(xs) = 0.65.  For this instance xs = 11.
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Figure 14.  The reverse transformation method for a discrete distribution.

Table 16 shows the random numbers that provided the observations of
Table 15.
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Table 16.  Random Numbers
1 2 3 4 5 6 7 8 9 10

1 0.6151 0.5569 0.18 0.7291 0.3046 0.869 0.1611 0.6633 0.9535 0.3298
2 0.861 0.5541 0.4883 0.983 0.1391 0.251 0.1389 0.3261 0.5123 0.3793
3 0.3108 0.0923 0.141 0.3124 0.2558 0.9785 0.9638 0.3351 0.5778 0.4323

Discrete Random Variables

To illustrate the reverse transformation method for a discrete random
variable, consider the binomial distribution with n = 3 and p = 0.9.  The
p.d.f. is :

Px(k) = 



3

k  (0.9) k (0.1)3-k  for k = 0,1,2, 3.

Table 17 shows the probabilities associated with this distribution.

We next define intervals on the real number line from 0 to 1 for the
possible values of the random variable.  The intervals are computed using
the cumulative distribution.  In general, when r is a real number and x is a
finite discrete random variable, the intervals are

I(k) = {r | Fx(k – 1) < r < Fx(k)} k = 0,1,2, … n.

For the example case the intervals are shown in Table 17.

Table 17.  Simulation Intervals for Binomial Distribution with n = 3, p = 0.9.
k 0 1 2 3

P(k) 0.001 0.027 0.243 0.729
F(k) 0.001 0.028 0.271 1.000
I(k) 0 - 0.001 0.001 - 0.028 0.028 - 0.271 0.271 - 1.0

To simulate an observation from the distribution, we select a
random number and determine the simulation interval in which the
random number falls.  The corresponding value of k is the simulated
observation.  For instance, using the random number 0.0969, we find that
0.0969 is in the range I(2).  The simulated observation is then 2.  In
general, let ri be a random number drawn from a uniform distribution in
the range (0, 1).  The simulated observation is

xi = {k | Fx(k - 1) < ri < Fx(k)}.

Six simulated values are shown in Table 18.
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Table 18. Random Numbers and Simulated Values
Random
Number

0.0969 0.2052 0.0013 0.2637 0.6032 0.5552

Simulated
Observation

2 2 1 2 3 3

Based on a sample of 30 observations, the sample mean, variance
and standard deviation are computed and shown in Table 19.  We also
estimate the probabilities of each value of the random variable from the
proportion of times that value appears in the data.  The sample results are
compared to the population values in the table.

Table 19.  Distribution Information Estimated from the Simulation
Estimated from Sample Population Value

Mean 2.667 2.7
Variance 0.2989 0.27

Standard Deviation 0.5467 0.5196
P(0) 0 0.001
P(1) 0.0333 0.027
P(2) 0.2667 0.243
P(3) 0.7 0.729

The statistics obtained from the sample are estimates of the
population parameters.  If we simulate again using a new set of random
numbers we will surely obtain different estimates.  Comparing the
statistics to the population values we note that the statistical mean and
variance are reasonably close to the population parameters that they
estimate.  We did not observe any values of 0 from the sample.  This is not
surprising as the probability of such an occurrence is one in a thousand,
and there were only 30 observations.
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Continuous Random Variables

Ex. 19.  A particular job consists of three tasks.  Tasks A and B are to be done
simultaneously.  Task C can begin only when both tasks A and B are complete.  The times
required for the tasks are TA, TB, and TC respectively, and all times are random variables.
TA has an exponential distribution with a mean of 10 hours, TB has a uniform distribution
that ranges between 6 and 14 hours, and TC has a Normal distribution with a mean of 10
hours and a standard deviation of 3 hours.  The time to complete the project, Y, is a
random variable that depends on the task times as

Y = Max.{ TA, TB } +TC .

What is the probability that the promised completion time of 20 hours is met.

An analytical solution to this problem would be difficult because the
completion time is a complex combination of random variables.
Simulation provides statistical estimates concerning the completion time.

Table 20 shows the results for 10 simulations.  The row labeled r
provides the random numbers used to simulate the random variables and
the rows labeled tA, tB and tc show the associated observations.  The row
labeled y is computed using the system equation and the observations in
each column.  The process of producing the simulated observations are
described in the following.

Table 20.  Simulated results for the example problem
1 2 3 4 5 6 7 8 9 10

r 0.663 0.979 0.256 0.312 0.141 0.092 0.311 0.251 0.139 0.983
tA 10.89 38.41 2.954 3.745 1.52 0.968 3.722 2.89 1.497 40.76
r 0.953 0.33 0.139 0.326 0.512 0.379 0.964 0.335 0.578 0.432
tB 13.63 8.638 7.111 8.609 10.1 9.034 13.71 8.681 10.62 9.459
r 0.731 0.615 0.557 0.18 0.729 0.305 0.869 0.861 0.554 0.488
tC 11.85 10.88 10.43 7.253 11.83 8.466 13.36 13.25 10.41 9.912
y 25.48 49.28 17.54 15.86 21.93 17.5 27.07 21.94 21.03 50.67

It is clear from the ten completion times in Table 20, that there is quite a
bit of variability in an estimate of the time to complete the project.  There
are 3 numbers below 20, so an initial estimate of the probability of a
completion time less than 20 would be 0.3.  A much larger sample would
be necessary for an accurate determination.

Closed Form Simulation

We continue to use the reverse transformation method to simulate
continuous random variables.  For continuous variables, however,
probabilities do not occur at discrete values.  Rather we have the c.d.f. that
gives probabilities
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P{X < x} = F(x)

The process for generating random follows.

• Select a random number r from the uniform distribution.

• Find the value of x for which r  = F(x) or x = F-1(r).

• The resulting x is the simulated value.

For some named distributions we have a closed form functional
representation of the c.d.f., while for others we must use a numerical
procedure to find the inverse probability function.  When we have a closed
form expression for the c.d.f. that can be solved for x given r, the
simulation procedure is easily performed.  For example consider the
exponential distribution for task A.  The mean of 10 hours yields the
parameter  = 0.1.  The general form of the p.d.f. is

f(x) = exp(- x) and F(x) = 1 -exp(- x)  for x ≥ 0.

Setting the cumulative distribution equal to r and solving we obtain

r = 1 - exp(- x) or x = - (1/ ) ln(1 - r).

The first line labeled r in Table 20 is used to simulate TA, shown in the
following line.  For example when

r = 0.663, tA = -10ln(1 - 0.663) = 10.89.

The uniform distribution associated with TB is also simulated with
a closed form expression.  The c.d.f. for a uniform distribution ranging
from a to b is

F(x) = (x - a)/(b - a) for a ≤ x ≤ b.

Setting r equal to the c.d.f. and solving form x yields the simulated value

x = a + r (b - a).

To illustrate, we compute the first simulated value of TB using the random
number r = 0.953.

tB = 8 + 0.953(14 - 8) = 13.63.

The Weibull distribution also allows a closed form simulation.  We
set the expression for the c.d.f. equal to the random number

r = F(x) = 1 - exp{- x } for x ≥ 0.

Solving for x, we obtain the expression for the simulated random variable

x = 
-ln[1 - r]

 .
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We recognize that when r is a random number from the range 0 to 1, (1 -
r) is also a random number from the same range.  This simplifies the
expression for the simulated observation to

x = 
-ln(r)

 .

Simulation using Inverse Probability Functions

When a closed form expression is not available for the cumulative
distribution, a computer program may be used to numerically compute the
inverse probability function.  For the example we used the inverse Normal
distribution function available with the Excel spreadsheet program to
simulate the observations from TC.  To simulate we must find

tC = F-1(r)

where F-1(r) is the inverse probability function for the Normal distribution
with mean 10 and standard deviation 3 evaluated for the value r.  Fig. 15
illustrates the reverse transformation in the case where a random number
equal to 0.731 yields tC equal to 11.85.
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Figure 15 The reverse transformation method for a Normal distribution

We complete the first column of the example by computing y with
the equation defining the interaction between the random variables.

y = Max(10.89, 13.63) + 11.85 = 25.48.



Simulating Random Variables 9

Using Simulation to Solve Problems

The main purpose for simulation is to analyze problems involving
combinations of random variables that are too complex to be conveniently
analyzed by probability theory.

Simulation is a very powerful tool for the analysis of complex
systems involving probabilities and random variables.  Virtually any
system can be simulated to obtain numerical estimates of its parameters
when its logic is understood and the distributions of its random variables
are known.  The approach is used extensively in the practice of operations
research.

Simulation does have its disadvantages however.  Except for very
simple systems, simulation analysis is computationally expensive.  Inverse
probabilities functions that do not have a closed form may be difficult to
compute and complex systems with many random variables will use
computer time.  Simulation results are statistical.  One selection of random
variables yields a single observation.  Since most situations involve
variability, it is necessary to make a large number of observations and use
statistical techniques for drawing conclusions.  Simulation results are
sometimes difficult to interpret.  This is partly due to the complexity of
many simulated situations and partly due to their inherent variability.
Effects may be observed, but causes are difficult to assign.


