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Decision Analysis

Consider a situation in which several decisions are to made sequentially.  To add a degree
of complication, suppose that the results of some of the decisions are not deterministic but
rather are governed by known probability distributions.  A typical illustration, as described
later in the chapter, might concern a repairperson searching for the source of a failure in a
computer.  She has available a number of tests to isolate the source but before any are
performed she only knows the probability distribution of their results rather than their exact
outcomes.  Moreover, the tests and the repair activity all involve costs.  The problem is to
determine a conditional strategy for the repair process that minimize the total expected cost
as a function of the observed results.  The conditional strategy is in the form of an optimal
policy that specifies a course of action, such as which test to run and whether to abandon
the testing activity, at each decision point that might arise during the failure isolation and
repair process.

This is a problem perfect for decision analysis, the subject of this chapter.  Similar
decision problems naturally arise in parlor games,  construction projects, and formation of
battle strategies, to name a few.  It makes some difference whether or not the forces
affecting the chance events are competitive.  In the competitive case, the procedures of
game theory, discussed in the next chapter, are appropriate.  If the forces are benign, then
the methods of decision analysis are available.  Here we will call the forces "nature" and
assume that nature does not operate in a competitive or vindictive fashion, but rather
according to probabilistic laws that can be estimated by experimentation or expert
judgment.  Given enough data, decision analysis allows one to determine an optimal
policy.

23.1 Prototype Example
Decision analysis first requires a modeling step and then a solution step.  As usual, the
modeling step is critical and will be illustrated with an example that encompasses most of
the interesting characteristics of a decision analysis problem.

An economically strapped student has just brought his failed computer to a local
repair shop.  The technician, being a friend of the student, would like to fix it with the least
expenditure of money.  She guesses that one of four parts has probably failed.  They are A,
B, C, and D, with the cost of replacement $100, $200, $30, and $80, respectively.  We
use the letters A through D to represent the events that the failure is caused by the
corresponding part, and the letter E to be the event that something other than the four parts
is causing the problem.

Three tests, X, Y and Z, are available to help locate the failed part and can be
performed at a cost of $50, $70, and $80, respectively.  If E is the result or if the technician
decides to abandon testing, the motherboard can be replaced at a cost of $500.  This is
guaranteed to fix the problem.

Before any testing is done we estimate from past experience the probability that
each of the five events is causing the failure.  These are called the prior probabilities.  The
events are mutually exclusive and their probabilities sum to 1.

P(A) = 0.15, P(B) = 0.2, P(C) = 0.3, P(D) = 0.25, P(E) = 0.1
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Decision Node

When the technician first gets the machine she can repair it by replacing the
motherboard at a cost of $500 or use test X to get a better idea what's
wrong.  This represents the first decision in the process, whether to perform
the test.  In Fig. 1 we begin to construct the decision tree.  The decision tree
is a graphical description of a sequential decision process and constitutes the
major part of the model.

The first decision is indicated by the rectangular node labeled 1.  The
symbol D1 interior to the node identifies the decision.  Two branches leave
the node indicating the two possible decisions available at this point, either
replace the motherboard or perform the X test.  The labels on the branches,
1 and 2, correspond to these two possibilities.  The cost associated with the
test (50) is shown adjacent to the branch entering node 3.
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Figure 1.  The first decision

Terminal Node

On the figure the decision to replace the motherboard leads to a terminal
node, shown as a black circle, labeled node 2.  At terminal nodes the
process stops, and the cost associated with the terminal state can be
evaluated.  The number adjacent to the node (500) is the cost associated
with reaching this node, that is, the cost of replacing the motherboard.

Chance Node

The decision to perform test X leads to node 3.  This is a chance node
because the result of the test is uncertain.  This kind of node is shown as a
white circle.

Test X can indicate one of three possibilities: x1 (failure probably
due to A or B), x2 (failure probably due to C or D), or x3 (an indication to
replace the motherboard).  Figures 2 shows the three possible events
associated with the experiment as branches leaving the chance node.  The
numbers on those branches are the probabilities of the three test results:
P(x1), P(x2) and P(x3).  The events are mutually exclusive and constitute
the entire range of possibilities, so their probabilities sum to 1.  The
branches terminate at nodes that either represent additional decisions or
terminal events.
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Figure 2.  The chance node showing the possible results of test X

Conditional Probabilities

Often in cases of tests, we are not given the probabilities of the various
outcomes directly.  Rather, we must estimate them using controlled
experiments from which we can approximate the conditional probabilities of
the results given the cause of the failure.

Say, for the example, we are given P(xj /Y ), the probability of test
result xj given that event Y  has caused the failure.  Here, Y  is one of our
supposed causes indicated by events A through E.  These are called the
conditional probabilities and are given in Table 1.

Table 1.  Conditional Probabilities, P(xj |Y )

Component (       Y       )   
A B C D E

x1 0.6 0.7 0.15 0.05 0.1
Test results x2 0.2 0.2 0.55 0.85 0.3

x3 0.2 0.1 0.3 0.1 0.6

What we need for the decision tree are the unconditional
probabilities of the results of the test: P(x1), P(x2), and P(x3).  These are
also called the marginal probabilities.  The marginal probability for test
result xi is computed by adding up the probabilities of the joint events
whose union is the event xi.  Each joint probability term is a product of the
known conditional probability and a prior probability.

P(xi ∩Y ) = P(xi |Y )P(Y ).
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For x1:

P(x1) = P(x1∩A) + P(x1∩B) + P(x1∩C) + P(x1∩D) + P(x1∩E).

The required marginal probability is computed from the known quantities.

P(x1) = P(x1|A)P(A) + … + P(x1|E)P(E)

= (0.6)(0.15) + (0.7)(0.2) + (0.15)(0.3) + (0.05)(0.25) + (0.1)(0.1)

= 0.2975.

Similarly, P(x2) = 0.4775 and P(x3) = 0.225.  These probabilities are seen
leaving the chance node in Fig. 2.

A Second Round of Decisions

If test X indicates x1, the technician can either use test Y or replace the
motherboard.  If the test indicates x2, she can use test Z or replace the
motherboard.  If the test indicates x3, she must replace the motherboard.

Figure 3 shows the details associated with a second round of
decisions.  If test X indicates x1, the technician can either continue the fault
isolation process with test Y or immediately replace the motherboard.  This
is shown as decision D2.  The cost of test Y is $70.  If test X indicates x2
she can continue the isolation with test Z or replace the motherboard.  This
is decision D3.  The cost of test Z is $80.  In both cases, the motherboard
replacement costs $500.
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Figure 3.  The second round of tests

Posterior Probabilities

We assume for the example that test Y can accurately identify the cause of
failure if it is due to components A or B.  If either of these indications are
observed, the faulty component is repaired.  Every other cause (C, D, or E)
is grouped into a third category.  If the test does not indicate a failure of A
or B, the motherboard is replaced.

Similarly test Z accurately identifies the problem if it is due to C or
D.  If the test does not indicate C or D, the fault must be in A, B, or E.
Rather than continue testing, the motherboard is replaced.  The results of the
tests together with the appropriate probabilities are shown in Fig. 4.
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Figure 4.  Results of the tests together with posterior probabilities

The probability of an event Y  yielding the result A is the probability
that event A is true given that test X returns x1 and test Y indicates A.
Because test Y is perfectly reliable at identifying cause A, the probability of
the test indicating A is just P(A | x1).  This is called the posterior probability
and can be computed with Bayes’ law.  In general, the posterior probability
of event Y  given that test X  indicates xi is:

P(Y | xi ) = 
P(xi ∩Y )

P(xi ) .

For events A and x1 this is

P(A | x1) =  
P(x1∩A)

P(x1)   =  
(0.6)(0.15)

0.2975   = 0.3025.

The complete set of posterior probabilities is shown in Table 2.

Table 2.  Posterior Probabilities, P(Y |xi )

Component (       Y       )   
A B C D E

x1 0.303 0.471 0.151 0.042 0.034
Test results x2 0.063 0.084 0.346 0.445 0.063

x3 0.133 0.089 0.400 0.111 0.267

We see in Fig. 4, P(A | x1) and P(B | x1) on the branches leaving the
chance node Y  and terminating at the events for replacing components A and
B, respectively.  The probability for the remaining branch is the sum of the
remaining probabilities in the row for x1.  Similarly, we see P(C | x1) and
P(D | x1) on the branches leaving the chance node Z and terminating at the
events for replacing components C and D, respectively.  The probability for
the remaining branch is the sum of the remaining probabilities in the row for
x2.  Because no test is performed if the outcome is x3, the numbers in the
last row of Table 2 of the posterior probabilities are not used for this
example.
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Decision Tree

The decision tree is the combination of components that we have described
and is the graphical description of a sequential process.  The complete tree
for the technician's decision problem is shown in Fig. 5.
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Figure 5.  Complete decision tree
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23.2 The General Decision Tree Model
 The decision tree is made up of nodes and branches.  The decision nodes are shown as
squares, chance nodes as white circles, and terminal nodes as black circles.  Branches, the
lines connecting the nodes, represent specific decisions and outcomes of chance events.
We draw the tree from left to right.  Branches leave nodes going to the right and enter
nodes coming from the left.  In the numbering convention used, every node has an unique
index which is smaller than any of its successor nodes.  Node 1, which precedes all other
nodes, is called the root node.  We now formalize and generalize some of the definitions
described in for the example.

Decision Node

The decision node represents a choice that must be made in the sequential
process.  The capital letter in bold italics within the square node is the name
of the set of possible decisions.  The branches that leave the node describe
the individual decisions in the set.  In the figure, the branches are
numbered, 1, 2, ...  The associated decision is identified with a lowercase
letter with the number used as an index.  For instance, the decision nodes in
the example problem and the corresponding decision sets are

D1  = {d11, d21, d31),  D2  = {d12, d22) and D3  = {d13, d23)

where D1 is the decision whether to use test X, D2 is the decision to use
test Y, and D3 is the decision to use test Z.

A number in parentheses adjacent to a branch shows the cost
associated with the decision.   For the example, the numbers are the costs of
performing the tests.  In general, we use C (j) as the cost associated with
decision j .

Chance Node

The circular nodes represent a chance event that may occur during the
sequential process.  The upper case letter in bold italics within the circle is
the name of the set of possible outcomes of the event.  The branches that
leave the node describe the individual outcomes in the set.   The outcome
associated with a branch is identified with a lowercase letter, with the
number adjacent to the branch used as an index.  For instance, the chance
nodes and corresponding outcome sets in Fig. 5 are

X  = {x1, x2, x3), Y  = {y1, y2, y3) and Z = {z1, z2, z3).

In the example, the outcomes are the results of the tests.

A number must be associated with each branch leaving a chance
node that gives the conditional probability of that particular outcome, given
all the decisions and chance outcomes on the path from the root node to the
chance node.  In general, we show these probabilities in parentheses
adjacent to the outcome branch.  Because of space limitations in Fig. 5, the
probabilities are shown to the right of the terminal nodes.

A number can also be associated with a branch leaving a chance
node showing the cost associated with that outcome.  Again we use the
notation C (j) to specify this cost of outcome j .  If this number is not zero,
it appears as the second number in the parentheses adjacent to an outcome
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branch.  For the example, only the outcomes leading to terminal nodes have
these costs.  They are shown in the parentheses to the right of the terminal
nodes.

Conditional Probabilities

Every branch leaving a chance node must be assigned a number which is the
conditional probability of that particular outcome given all the decisions and
chance outcomes on the path from the root node to the chance node.  This
probability is written as P(j | Path), or the probability of outcome j, given
the path to the chance node.  In the example, this should be apparent for the
branches leaving nodes Y  and Z, where the probabilities are conditioned on
the results of test X .

We use the notation above to indicate this probability with "Path"
designating the intersection (the symbol ∩ means intersection) of all
decisions and chance outcomes on the path from the root node.  For
instance, for outcome y1 leaving node 6 in Fig. 5, we can write the
conditional probability as

P(y1 | d12 ∩ x1 ∩ d22) = P(y1 | x1) = 0.303.

The probability of the result y1 depends on the fact that we performed tests
X  and Y  as well as on the outcome of test X.  The probabilities are the
posterior probabilities described above.

Decision Function

The decision function specifies the optimal course of action to be taken at
each decision node.  In Fig. 5, the decision nodes are identified by the
indices 1,4, and 5.  A decision function must specify a decision for each of
these nodes.  The criterion for optimality is that all decisions should be
made to minimize the expected loss at every decision node.
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23.3 Solving the Decision Tree
A solution to the problem is a specification of the optimal decision at each decision node.

We call this the optimal policy.  In general, it is given by d*(j), where j is the index of a

decision node and d*(j) is an index of one of the decision branches leaving node j.   We
derive the optimal policy by assuming that all decisions should be made to minimize the
expected loss at each decision node.  This is called the Bayes’ criterion.

The rollback procedure is generally used to solve the decision tree.  We work
backwards starting from the nodes farthest to the right sequentially evaluating the expected
loss for each chance node and the minimum expected loss at each decision node.  For the
latter, we must evaluate the expected loss for each possible decision and select the one
yielding the minimum.  In the following, we present the general procedure using the
example to illustrate the computations.

The Expected Loss at a Chance Node

Let M represent a general chance node with index i , and assume that there
are K outcomes leaving the node (m1, m2, . . . ,mK).  Let t(mk) be the index
of the node terminating the branch representing outcome mk,C(mk) be the
cost for the outcome, and P(mk | Path to M) be the conditional probability
associated with the outcome.  Then the expected loss at chance node i is f(i),
where

f (i) =  ∑
k=1

K
P(mk  | Path to M)(C(mk)  +  f(t(mk))). (1)

In the example, both the chance nodes Y  and Z are at the extreme
right of the decision tree.  The expected cost given that test Y is performed
is f(6), and the expected cost given that test Z is performed is f(7).
Computing, we find

f (6) = E [loss at Y ] = ∑
k=1

3
P(yk |  x1)(C(yk)  +  f(t(mk)))

= (0.303)(100) + (0.471)(200) + (0.226)(500) = 237.8

f (7) = E [loss at Z] = ∑
k=1

3
P(zk|  x2)(C(zk)  +  f(t(mk)))

= (0.346)(30) + (0.445)(80) + (0.209)(500) = 150.7

The Minimum Expected Loss at a Decision Node

Let D represent a general decision node with index j, and assume that there
are J decisions leaving the node, d1, d2, . . . ,dJ.  Let t (dj) be the index of the
node terminating the branch representing decision dj  and C(dj) be the cost
for the decision.   Then the minimum expected loss at the decision node is
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f (j ) = Minimum {C(dj) + f(t(dj)) | dj ∈ J}. (2)

The optimal decision is the index that obtains the minimum, i.e., d*(j).

For the example, we illustrate the computations for decision nodes
D2 and D3 (nodes 4 and 5).

f (4) = Minimum {C(dj) + f(t(dj)) | dj ∈ D2}

= Minimum { 500, 70 + 237.8} = 307.8; d*(4)= 2

f (5) = Minimum {C(dj) + f(t(dj)) | dj ∈ D3}

= Minimum{ 500, 80 + 104.7} = 184.7; d*(5) = 2

In both cases the optimal decision is to test.

Algorithm

The procedures indicated by Eqs. (1) and (2) suggest a simple algorithm to
determine the optimal course of action at each decision node, and hence the
optimal solution for the problem.  It is similar to a dynamic programming
algorithm in that it starts at the end of the tree and works backwards toward
the root.  It is a one-pass algorithm since it visits each node only once.

Step 1. Choose the node with the largest index.  Let this be node i . (Recall
that the nodes are numbered so that every node has an index
smaller than any of its successor.)

Step 2.  If node i is a terminal node go to step 3.

If node i is a chance node, use Eq. (1) to evaluate its expected
loss and go to Step 3.

If node i is a decision node, use Eq. (2) to evaluate its minimum
expected loss.  Record the optimal decision as part of the
optimal decision function and go to Step 3.

Step 3. Decrease i  by 1.  If i  is greater than 0, go to Step 2.  Otherwise,
stop with the optimal decision function.

Example

Applying the algorithm to the decision tree in Fig. 5, we get the results
listed in Table 3.  Only decision and chance nodes are shown because no
action is required at terminal nodes.
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Table 3.  Algorithmic Results for Decision Tree in Figure 5

Node Name Type Expected
loss

Optimal
decision

7 Z Chance 150.7 ––
6 Y Chance 237.8 ––
5 D3 Decision 184.7 2
4 D2 Decision 307.8 2
3 X Chance 292.3 ––
1 D1 Decision 342.3 2

The optimal policy is

d*(1) = 2 do test X

d*(4) = 2 if the result of test X is x1 do test Y

d*(5) = 2 if the result of test X is x2 do test Z

The expected cost of the repair process is $342.30.  This is the minimum
expected cost solution.
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23.4   Discussion and Assessment
The unique feature of decision trees is that they allow management to view the logical order
of a sequence of decisions. They afford a clear graphical presentation of the various
alternative courses of action and their possible consequences. By using decision trees,
management can also examine the impact of a series of decisions (over many periods) on
the objectives of the organization.  Such models reduce abstract thinking to a rational visual
pattern of cause and effect.  When costs and benefits are associated with each branch and
probabilities are estimated for each possible outcome, analysis of the flow network can
clarify choices and risks.

On the down side, the methodology has several weaknesses that should not be
overlooked.  A basic limitation of its representational properties is that only small and
relatively simple models can be shown at the level of detail that makes trees so descriptive.
Every variable added expands the tree's size multiplicatively.  Although this problem can be
overcome to some extent by generalizing the diagram, significant information may be lost
in doing so.  This loss is particularly acute if the problem structure is highly dependent or
asymmetric.

Regarding the computational properties of trees, for simple problems in which the
endpoints are precalculated or assessed directly, the rollback procedure is very efficient.
However, for problems that require a roll-forward procedure, the classic tree-based
algorithm has a fundamental drawback: it is essentially an enumeration technique.  That is,
every path through the tree is traversed in order to solve the problem and generate the full
range of outputs.  This feature raises the "curse of dimensionality" common to many
stochastic models: for every variable added, the computational requirements increase
multiplicatively.  This implies that the number of chance variables that can be included in
the model tends to be small.  There is also a strong incentive to simplify the value model,
since it is recalculated at the end of each path through the tree.

Nevertheless, the enumeration property of tree-based algorithms in theory can be
reduced dramatically by taking advantage of certain structural properties of a problem.
Two such properties are referred to as "asymmetry" and "coalescence."  For more
discussion and some practical aspects of implementation, consult Call and Miller (1990).
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23.5 Exercises

1. A bank manager wants to develop a decision policy to assist the bank's credit officers.
Consider a situation involving a $20,000 loan.  The following information has been
gathered from historical records regarding the percentage of customers in various
income categories who seek such a loan.

Customer type Income (1000) Percentage

A > 100 10
B 80 - 100 20
C 60 - 80 40
D < 60 30

There are several steps in the decision process for each customer.  The officer first
decides whether to reject the loan application, accept the application, or call for a credit
check.  Whenever a customer is rejected there is a loss of good will, which can be
reflected as a cost that depends on the class of customer.  When the application is
accepted, there is a probability that the customer will default and the loan principal
lost.  If the customer does not default, the gain is the interest income from the loan.
All this information is shown in the following table.

Customer Loss from Probability Loss on Income from
type rejection of default default loan

A 1000 0.05 20,000 2000
B 500 0.10 20,000 2200
C 200 0.10 20,000 2500
D 0 0.15 20,000 3000

The cost of a credit check is $300.  The results of the check are "good risk" or "bad
risk."  The good risk customer has a probability of default 0.05 less than the entries in
the table above.  The bad risk customer has a probability of default 0.05 more than the
entries in the table above.  After the credit check, the officer must accept or reject the
loan application.  When a customer is rejected, assume that the alternative investment
for the $20,000 has a $1500 return.  Show the decision tree for this situation and find
the optimal decision policy.

2. You own a stretch of land in western Texas at which there is the possibility of
discovering oil.  Your options are as follows.

a1, drill for oil yourself

a2, lease the site to someone else to drill

a3, lease the site but maintain an interest in the results

There are four possible outcomes regarding the success of the well.

q1, 600,000 barrel well

q2, 400,000 barrel well
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q3, 100,000 barrel well

q4, dry hole.

Your profit ($1000) depends on which development option you choose and the results
of the drilling, as shown in the following table.

     Well success
q1 q2 q3 q4

a1 800 400 –50 –100
Decision a2 60 60 60 60

a3 300 100 0 0

Based on information about the site, you have estimated the prior probabilities of the
four results to be

P(q1) = 0.1,  P(q2) = 0.15,  P(q3) = 0.25,  P(q4) = 0.5.

a. Based on the prior probabilities, which development option should you choose?

b. Rather than making a firm decision among the three options, you now have a fourth
option of running a seismic test to get more information on the likelihood of success.
From your experience in drilling in this area, you have estimated the conditional
probabilities of well success given the test result.  These values are denoted by P(xi | qj),
and appear in the following table.

     Well success
q1 q2 q3 q4

x1 0.6 0.5 0.3 0.1
Test result x2 0.3 0.2 0.3 0.3

x3 0.1 0.15 0.2 0.4
x4 0 0.15 0.2 0.2

Using Bayes’ law, compute the posterior probabilities P(qj | xi).

c. The cost of the seismic test is $20,000.  Perform a decision analysis to determine
whether or not to do the test.  Also determine which of the development options to
pursue based on the results of the test.  What is the profit associated with the optimal
decisions?

3. A new oil field has been discovered with different prior probabilities of well success
than those identified in Exercise 2.  These values are listed below.  Using the original
conditional probabilities for the results of the seismic test, find the optimal policy.

P(q1) = 0.20, P(q2) = 0.20, P(q3) = 0.30, P(q4) = 0.30.

4. Use the original statement of the problem given in Exercise 2 but let the conditional
leasing arrangement change.  The returns for conditional lease are  $600,000 for a
600,000 barrel well, $300,000 for a 400,000 barrel well, and no return for a 100,000
barrel well or a dry well.  Find the optimal policy.
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5. The daily demand for a particular type of printed circuit board in an assembly shop can
assume one of the following values:  100, 120, or 130 with probabilities 0.2, 0.3, and
0.5.  The manager of the shop is thus limiting her alternatives to stocking one of the
three levels indicated.  If she prepares more boards than are needed in the same day,
she must reprocess those remaining at a cost price of 55 cents/board.  Assuming that it
costs 60 cents to prepare a board for assembly and that each board produces a revenue
of $1.05, find the optimal stocking level by using a decision tree model.

6. In Exercise 5, suppose that the owner wishes to consider her decision problem over a
2-day period.  Her alternatives for the second day are determined as follows.  If the
demand in day 1 is equal to the amount stocked, she will continue to order the same
quantity on the second day.  Otherwise, if the demand exceeds the amount stocked,
she will have the options to order higher levels of stock on the second day.  Finally, if
day 1’s demand is less than the amount stocked, she will have the options to order any
of the lower levels of stock for the second day.  Express the problem as a decision tree
and find the optimal solution using the cost data given in Exercise 5.

7. Zingtronics Corp. has completed the design of a new graphic-display unit for
computer systems and is about to decide on whether it should produce one of the
major components internally or subcontract it to another local firm.  The advisability
of which action to take depends on how the market will respond to the new product.
If demand is high, it is worthwhile to make the extra investment for special facilities
and equipment needed to product the component internally.  For low demand it is
preferable to subcontract.  The analyst assigned to study the problem has produced the
following information on costs (in thousands of dollars) and probability estimates of
future demand for the next 5-year period:

                                                   

                  Future demand                 

    Action                                              Low                       Average                High

Produce $140   $120 $90

Subcontract $100   $110 $160

    Probability                                       0.10                        0.60                   0.30       

a. Prepare a decision tree that describes the structure of this problem.

b. Select the best action based on the initial probability estimates for future demand.

c. Determine the expected cost with perfect information (i.e., knowing future demand
exactly).

8. Refer to Exercise 7.  The management of Zingtronics is planning to hire Dr. Sam
Fenichel, an economist, to prepare an economic forecast for the computer industry.
The reliability of his forecasts from previous assignments is provided by the following
table of conditional probabilities:
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                         Future demand              

Economic forecast Low Average High

Optimistic   0.1   0.1   0.5

Normal   0.3   0.7   0.4

Pessimistic     0.6        0.2        0.1

                                                        1.0                        1.0                        1.0       

a. Select the best action for Zingtronics if Dr. Fenichel submits a pessimistic
forecast for the computer industry.

b. Prepare a decision tree diagram for the problem with the use of Dr. Fenichel's
forecasts.

c. What is the Bayes strategy for this problem?

d. Determine the maximum fee that should be paid for the use of Dr. Fenichel's
services.

9. Allen Konigsberg is an expert in decision support systems and has been hired by a
small software engineering firm to help plan their R&D strategy for the next 6 to 12
months.  The company wishes to devote up to 3 person-years or roughly $200,000 to
R&D projects.  Show how Konigsberg can use a decision tree to structure his
analysis.  State all your assumptions.
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