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Game Theory

Most of operations research deals with problems that are very complex or that in some way
are affected by random events.  When the problems are deterministic, a large variety of
them can be solved, at least conceptually, with the methods discussed in the first part of the
book regardless of their complexity.  Randomness clouds the definition of optimality and
makes the decision process that much more difficult due to our inability to predict outcomes
with certainty.  The methods of operations research provide the analytic tools that give
additional information to the decision maker, and in many cases allow optimal decisions to
be prescribed.  In Chapter 23, we considered decision analysis, a process that leads to
policies that are optimal even in the presence of random events.  With decision analysis we
are assuming that nature, our “opponent,” is fair or unbiased.  The probability distribution
for a random event may be affected by previous events and decisions, but the event is
selected by a fair lottery according to the given probability distribution.

The decision problems we often involve another individual who may be an
antagonistic opponent.  We must make decisions knowing that the result will be governed
in part by the actions of a competitor.  Husbands and wives must deal with each, parents
with their children, businesses with their competitors, military commanders with their
enemies, and game players with their opponents.  The part of operations research that
addresses this kind of situation is called game theory.  Although clearly applicable to games
as the name implies, it is appropriate in a wide variety of contexts in which one must make
a decision whose outcome will be determined by the actions of one or more individuals.

We introduce the subject in this chapter by considering a very simple game with
two opposing players.  It is called a zero-sum game in which a gain to one player is a loss
to the other.  All information concerning the game is known to both players; i.e., there is
complete information.  The players are said to be rational and intelligent.  A rational person
is one who acts in such a way as to maximize his or her expected payoff or utility as
economists would say.  An intelligent person is one who can deduce what his or her
opponent will do when acting rationally.

24.1 Basic Models
With a game theory model, we provide a mathematical description of a social situation in
which two or more individuals, or players, interact. Such a broad scope allows many
kinds of models.  There may be two players or many.  The players may be competitive or
cooperative.  With more than two players there may be collusion among subsets of the
players.  Games may involve several sequential steps or one step for each player.
Competitive situations may be repeated or be faced only once.  Information concerning the
rules of engagement and the payoffs may be known to all players or imperfectly known to
some.  In an introductory discussion, we can only touch on this important and valuable
subject.  We restrict attention to the simplest model -- the two-person, zero-sum game.

The Two-Person, Zero-Sum Game

Consider a competitive situation with two players and arbitrarily assume that
player I is a woman and player II is a man.  The game is specified by the
sets of strategies available to the two players and the payoff matrix.  The set
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of strategies for player I is indexed from 1 through m.  The set of strategies
for player II is indexed from 1 through n.  The payoff matrix (see Table 1)
specifies the gain or profit to player I for every strategy pair (i, j).

Table 1. Payoff Matrix

Player II
1  2 .. .  n

1 p11 p12 . . . p1n

Player I 2 p21 p22 . . . p2n

  M    M    M    M
m pm1 pm2 . . . pmn

  The two players select their strategies simultaneously, and when
player I uses strategy i  and player II uses strategy j, player I receives the
payoff pij from player II.  A positive number is a gain for player I and a
negative number is a loss (a gain for player II).   A gain to one player is a
loss to the other, thus providing the zero-sum feature.  The payoff obtained
when the two players select their strategies is the value of the game.  Each
player know all strategies available to the other, and they both agree on the
payoff matrix.

  We will see that this is not a very interesting game because the
optimal strategies for both players can be determined in advance and neither
player can improve his or her position by changing the prescribed strategy.
Solutions are either pure or mixed strategies.  With a pure strategy a player
chooses only one strategy in a play of the game.  In a mixed strategy, a
player chooses one of several strategies according some probability
distribution.

Tic-Tac-Toe

To illustrate, consider this very simple example of a two-person game.  As
most readers will know, the game is played on the diagram shown in Fig.
1a.  The first player begins by entering an X in one of the nine available
spaces.  The second player places a O in one of the eight remaining places.
The two players continue taking turns in this fashion (first X and then O)
until either all squares are filled, it becomes clear that one player has won,
or it is clear that neither player can win.  The game is won if three of one
player's symbols are arranged in a straight line either horizontally, vertically
or diagonally.  Figure 1 shows an example where the sequence of plays b
through h results in a win for X.  The game frequently ends in a tie with no
player winning, as shown in Fig. 1i.
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O plays

d.

X plays (a win is assured)

e.

O blocks X win.

f.

X plays -- two ways to win

g.

O blocks X from winning

h.

X plays to a winning game

i.

game is tied

Figure 1.  The tic-tac-toe game

To analyze this game, one might use a decision tree as described in
Chapter 23.  As all experienced players of know, the result of the game is
completely determined after the first X and the first O have been played,
assuming neither player makes a mistake.  Representing a win for X as the
value 1, a tie with a 0, and a win for O as a –1, Fig. 2 shows the decision
tree based on the first two plays.  Because the game is symmetric it is only
necessary to consider squares 1, 2 and 3 for player I and a reduced number
of squares for player II.  Any moves left out are symmetric to one of those
shown.  Because player I goes first, her three possible plays are in square
1, 2 and 3.  Given the choice of player I, player II has the several remaining
squares as a possible response.
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Figure 2.  The decision tree showing the possible results of tic-tac-toe

The results of the game given the first two plays are shown in the
figure.  The game shown in Fig. 1b - Fig. 1h follows the top path of the
decision tree where player I uses square 1, the center, and player II follows
with square 2.  The ultimate result is a win for player I.  The complete game
in Fig 1i is the result obtained when player I starts with square 2 and player
II counters with square 3.  The game is always a tie when the successive
plays are made intelligently.

The tree shown in Fig. 2 is a model of the game and is called the
extensive form.  It depicts the sequential nature of the game.  Even for this
simple situation, the extensive form can be very large.  If we had not
recognized the symmetry of the game and the fact that only the first two
moves are important, the tree would be impossible to show on a single
page.

The Strategic Form

Game theory uses an alternative model called the strategic form which
represents the game as a matrix.  The assumption of the strategic form is
that both players select strategies before the game is played and simply act
out those strategies in turn.  A strategy must describe a plan of action for
every possible situation.

As a first attempt, we might define a strategy for player I as her first
play and the strategy for player II as his response.  This definition does not
work for player II.  It does not prescribe what player II should do if player I
uses the square that he was intending to use.

To construct the strategic form of the tic-tac-toe game, we define the
following strategies regarding the first moves for the two players.
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Player I:  Select one of the nine squares on the game board.

Player II:  Select one of the nine squares on the game board.  If player I
uses the selected square,

• put an O in square 3, 5, 7, or 9 if an X is in square 1 (center)

• put an O in cell 1 If an X is in cell j.

These are complete strategies.  The players can select them before the game
begins and follow them through the first two plays.  The strategic form of
the game is represented in Table 2.  The entries in the table are the values of
the game for every possible selection of strategies.

Table 2. Strategic Form of the Tic-Tac-Toe Game

Strategy for Player II, O

1 2 3 4 5 6 7 8 9

1 0 1 0 1 0 1 0 1 0
2 0 0 0 1 1 0 1 1 0
3 0 1 0 1 1 1 1 1 1

Strategy for 4 0 1 0 0 0 1 1 0 1
Player I,  X 5 0 1 1 1 0 1 1 1 1

6 0 0 1 1 0 0 0 1 1
7 0 1 1 1 1 1 0 1 1
8 0 1 1 0 1 1 0 0 0
9 0 1 1 1 1 1 1 1 0

Conceptually, every game that can be described by an extensive
form like that in Fig. 2 has an equivalent strategic form similar to the one
shown in Table 2.  For convenience, we will use the strategic form for
further analysis.  It is equivalent to the payoff matrix introduced earlier.
The payoff matrix together with the descriptions of the strategies constitute
the model for the two-person, zero-sum game.
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24.2 Solution Methods
We solve the game by prescribing the optimal strategies each player should adopt.  The
game is played by the players following the strategies.  Solutions may involve pure
strategies, in which each player uses only one play, or mixed strategies, in which plays are
selected randomly according to some probability distribution.  The value of the game is the
payoff obtained when both players follow their optimal strategies.

Dominated Strategies

A dominated strategy is a strategy that yields a payoff for one of the players
that is less than or equal to the payoff for some other strategy for all actions
of the opponent.  For player I, strategy i is dominated by strategy k if

pij  ≤  pkj  for  j  = 1, ..., n (1)

In other words i is dominated by k if every element of row i in the payoff
matrix is less than or equal to every corresponding element of row k.

For player II, a strategy is dominated if every element of a column is
greater than or equal to every corresponding element of some other column.
Strategy j is dominated by strategy k  if

pij  ≥ pik for  i  = 1, ..., m. (2)

It should be clear that dominated strategies will not be used in the
solution of the game.  If a dominated strategy is used, a better solution is
always obtained by replacing it with the dominating strategy.  The first step
in the solution process is to find and eliminate the dominated strategies from
the game.

Using the tic-tac-toe payoff matrix in Table 1, we observe that
column 1 is smaller than every other column.  Strategy 1 for player II
dominates every other strategy.  We can, therefore, eliminate all other
columns.  The resulting matrix has one column with all zeroes.  For player
I, all strategies are equal, and the game will always end in a tie.  The
optimum strategy is

Player I:  Select one of the nine squares of the game board

Player II:  Always use the center square unless player I chooses it

If player I uses the center square, put an O in square 3, 5, 7, or 9.

The dominance argument shows what many have discovered by trial
and error, tic-tac-toe is not a very interesting game for intelligent players.
One can win only if one of the players makes a mistake.

We use the more interesting hypothetical payoff matrix in Table 3
for another illustration.  To describe the sequence of operations in a solution
we call row i and column j of the current payoff matrix ri and cj
respectively.  We say current because the payoff matrix changes with the
elimination of strategies.  Then

•  row i is dominated by row k if ri ≤ rk, and
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•  column j is dominated by row k if cj ≥ ck.

Table 3.  Payoff Matrix with Dominating Strategies

Player II
1  2 3 4

1 5 4 –3 –2
 Player I 2 2 –1 –2 0

3 2 4 –1 0
4 1 3 2 1

We start with player I and find any dominated strategies.  To do this
we must compare every pair of rows to see if the condition identified by
Equation (1) is satisfied.  Dominated strategies are eliminated by deleting the
associated rows from the payoff matrix.  For player II, we find and
eliminate dominated strategies by comparing all pairs of columns to see if
the Equation (2) is satisfied.  The associated dominated columns are then
deleted.  Since deleting rows and columns may uncover new dominated
strategies, we continue the process until no dominated strategies remain for
either player.  If only one strategy remains for both players, these strategies
are the solution to the problem.

We solve the example problem by first noting that

r2 ≤ r3, c1 ≥ c4, and c2 ≥ c3.

Strategy 2 is dominated for player I and strategies 1 and 2 are dominated for
player II.  Deleting the associated rows and columns of the dominated
strategies we obtain a new payoff matrix.

Player II
3 4

1 –3 –2
Player I 3 –1 0

4 2 1

Now

r1 ≤ r3, r3 ≤ r4

and the new matrix is

Player II

3 4
Player I 4 2 1

When only one row (or column) remains, it is always possible to
reduce the number of columns (or rows) to one by dominance.  We then
find the solution to the game with both players using strategy 4.  The value
of the game is equal to 1.



8 Game Theory

Say the game was sequential rather than both players selecting their
plays simultaneously.  Table 4 gives the payoff matrix when player I goes
first.  One might suspect player II has the advantage since his play is
obvious given the selection of player 1.

Table 4.  Payoff Matrix when Player I Goes First

Player II Best
1  2 3 4 for II Value

1 5 4 –3 –2 3 –3
 Player I 2 2 –1 –2 0 3 –2

3 2 4 –1 0 3 –1
4 1 3 2 1 1 or 4 1

When player I selects any strategy except 4, player II will do better.  But
knowing the payoff matrix and assuming player II is rational, why should
she use any strategy except 4?  The only rational solution is for player I to
use strategy 4 and player II to counter with strategy 1 or 4.

Saddle Point Solutions

Using dominance, a strategy is eliminated if it is inferior to (or at best no
better than) some other strategy in all respects.  This uses what most would
consider as a reasonable characteristic of rationality, it is better to receive a
larger payoff than a smaller payoff.  What if dominance cannot be used to
eliminate all but one strategy as in the matrix of Table 5?

Table 5. Payoff Matrix for Saddle Point Example

Player II
1 2 3

1 5 1 0
 Player I 2 0 2 7

3 4 3 4

Consider the decision problem of player I.  In the worst case assume
that her opponent knows her decision.  If she chooses strategy 1, he will
choose strategy 3 for a value of 0.  If she chooses strategy 2, he will choose
strategy 1 for a value of 0.  If she chooses strategy 3, he will choose
strategy 2 for a value of 3.  This information is obtained by selecting the
minimum value for each row and the associated best strategy for player II.

Using a similar analysis for player II.  If he chooses strategy 1, she
will choose strategy 1 for a value of 5.  If he chooses strategy 2, she will
choose strategy 3 for a value of 3.  If he chooses strategy 3, she will choose
strategy 2 for a value of 7.  This information is obtained by selecting the
maximum value for each column and the associated best strategy for player
I.  Table 6 summarizes the information for both players.
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Table 6. Payoff Matrix with Saddle Point Strategies

Player II Minimum Strategy
1 2 3 of row for II

1 5 1 0 0 3
Player I 2 0 2 7 0 1

3 4 3 4 3 2

Maximum for column 5 3 7
Strategy for I 1 3 2

If both players assume their opponents are rational and intelligent,
the obvious conclusion is that player I should select strategy 3 and player II
should select strategy 2, and the value of the game is 3.  When player I
selects strategy 3, any other choice beside strategy 2 for player II will result
in a greater loss for player II.  When player II selects strategy 2, any other
choice except strategy 3 for player I results in a smaller return for player I.

The cell (3, 2) is called the saddle point of the game.  The two
players are using the minimax criterion for strategy selection.  Not every
game has a saddle point, but when it does the saddle point is the solution of
the game.

In general terms, the pure minimax strategy for player I is the
strategy that maximizes her minimum gain.  The payoff for this strategy is
vL  where

vL = Maxi = 1,...,m{Minj = 1,...,n pij} = Max{0, 0, 3} = 3

The row that determines the maximum is the pure minimax strategy for
player I.  This is row 3 for the example.  The pure minimax strategy for
player II is the strategy that minimizes the maximum gain for player I.  The
payoff for this strategy is vU  where

vU  = Minj = 1,...,n {Maxi = 1,...,m pij} = Min{5, 3, 4} = 3

The column that obtains the minimum is his pure minimax strategy for
player II.  This is column 2 for the example.

The quantities vL and vU  defined above are called the lower and
upper value of the game, respectively.  When these two values are the same,
the common result, v = vL = vU  is called the value of the game.  When the
same element of the payoff matrix determines the minimax strategies for
both players, the upper and lower values are equal, and that element is
called the saddle point.   A stable game is a game with a saddle point.  In
this game, both players can adopt the pure minimax strategy and cannot
improve their positions by moving to any other strategy.

Because both players are intelligent, they both know the payoff
matrix.  Because they are both rational, the only possible solution for this
game is the saddle point.

An unstable game is a game with no saddle point.  In this case upper
and lower values are not equal.  A player cannot adopt the pure minimax
strategy without providing the opportunity for the opponent to gain an
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improved return.  The next section describes how this situation is handled
with mixed strategies.

Mixed Strategies

Consider the payoff matrix in Table 7.  We see for this matrix

vL = Maxrows{Mincolumns pij} = Maxrows{–2, 1} = 1

The pure maximin strategy for player I is strategy 2.

vU  = Mincolumns {Maxrows pij} = Min{4, 4, 6, 7} = 4.

The pure minimax strategy for player II is strategy 1.  Thus, the lower and
upper bounds on the value of the game are not the same so no saddle point
exists.  If both players used their pure minimax strategy, the payoff for the
game would be 2; however, this is not the solution.  Rather the solution is
one in which both players use a mixed strategy.

Table 7. Payoff Matrix for Example Using Mixed Strategies

Player II Minimum Strategy
1 2 3 4 of row for II

Player I 1 4 0 6 –2 –2 4
2 2 6 1 7 1 3

Maximum for column 4 6 6 7
Strategy for I 1 2 1 2

A mixed strategy is procedure for playing the game by which each
player chooses the strategy using a discrete probability distribution.  For
player I, the probabilities are (x1, x2, . . . , xm), where xi  is the probability

that strategy i will be chosen.   For player II, the probabilities are (y1, y2,
. . . ,yn), where yj is the probability that strategy j will be chosen.  Both sets
of probabilities must sum to 1.  The expected value of the payoff of the
game when the players use a mixed strategy.

Expected payoff = pij xiy j
j =1

n

∑
i =1

m

∑ .

x i
i =1

m

∑ = 1,  y j
j =1

n

∑ = 1

Each player will use the mixed strategy that will minimize his or her
maximum expected loss.  In terms of the payoff, player I will adopt a mixed
strategy that will maximize the minimum expected payoff, and player II will
adopt a mixed strategy that will minimize the maximum expected payoff .  If
both players follow their minimax strategies, the value of the game, v, is
equal to the expected payoff.

To describe the logic of the mixed strategy, consider the problem of
player I when she is selecting the probabilities (x1, x2, . . . , xm).  She knows
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that the expected payoff of the game to player I when player II uses pure
strategy j is

pij xi
i =1

m

∑  for j = 1,… ,n

As an intelligent and rational person, player II selects a strategy that will
assure that the value of the game for player I, vI, is less than or equal to the
expected value for any pure strategy j.  Then we can write for each j the
constraint

pij xi
i =1

m

∑ ≥ v I  for j = 1,…,n.

Now player I will select values for the probabilities that will maximize her
return.  Together this logic leads to the linear programming solution for
player I's strategy.

Maximize vI

subject to pij xi
i =1

m

∑ ≥ vI,  j = 1,…,n (3a)

x i
i =1

m

∑ = 1 (3b)

xi ≥ 0,  i = 1,…,m (3c)

The last two constraint sets assure that the decision variables xi define an
acceptable probability distribution.

It is not hard to show that the dual of this model solves the selection
problem for player II.  Assigning the dual variables yj to the constraints in
the set (3a), we obtain the dual problem.

Minimize vII

subject to pijy j
j =1

n

∑ ≤ vII,  i = 1,…,m. (4a)

y j
j =1

n

∑ = 1 (4b)

yj ≥ 0,  j = 1,… ,n (4c)

Solving either one of these linear programs yields the optimal
solution for one player.  The dual values provide the solution for the other
player.

We repeat the payoff for the example matrix in Table 8 so that we
can construct the linear programming model.
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Table 8. Payoff Matrix in Table 7

Player II
1 2 3 4

Player I 1 4 0 6 –2
2 2 6 1 7

The linear programming model for player I is

Maximize  v

subject to 4x1 + 2x2 ≥ v

          6x2 ≥ v

6x1 + 1x2 ≥ v

–2x1 + 7x2 ≥ v

x1 + x2 = 1

x1 ≥ 0, x2 ≥ 0

and the dual model for player II is

Minimize v

subject to 4y1           + 6y3  – 2y4 ≤ v

2y1 + 6y2 + 1y3 + 7y4 ≤ v

y1 + y2 + y3 + y4 = 1

y1 ≥ 0, y2 ≥ 0, y3 ≥ 0, y4 ≥ 0

Solving, we get the solution

(x1, x2) = (5/11, 6/11) with v = 32/11

for the primal problem and

(y1, y2, y3, y4) = (9/11, 0, 0, 2/11)

for the dual problem.

A Modified Tac-Tac-Toe Game

As another example we modify the tic-tac-toe game so that the players select
their opening moves before the game begins.  To give player II a better
chance, we say that player II wins if both players select the same square for
the initial move.  Otherwise we proceed to play the game as before.  The
new payoff matrix is shown as Table 9.
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Table 9.  Strategic Form of the Tic-Tac-Toe Game when  X goes first.

Player II:  First play for O

1 2 3 4 5 6 7 8 9 Min

1 –1 1 0 1 0 1 0 1 0 –1
2 0 –1 0 1 1 0 1 1 0 –1
3 0 1 –1 1 1 1 1 1 1 –1

Player I: 4 0 1 0 –1 0 1 1 0 1 –1
First play 5 0 1 1 1 –1 1 1 1 1 –1
for X 6 0 0 1 1 0 –1 0 1 1 –1

7 0 1 1 1 1 1 –1 1 1 –1
8 0 1 1 0 1 1 0 –1 0 –1
9 0 1 1 1 1 1 1 1 –1 –1

Max 0 1 1 1 1 1 1 1 1

We notice from this table that

vL = –1 and vU = 0.

This game does not have a saddle point solution.  Using the theory of this
section, we can construct a linear programming model to find the optimal
strategies:

Player I (X player): Use a mixed strategy with x2 = 0.5, x3 = 0.25 and
x5 = 0.25

Player II (O player): Use pure strategy 1

The expected value of the game is 0.  Although player II can adopt a pure
strategy, it is important that player I adopt a mixed strategy, not including
the action of putting an X in the center.  There are a number of alternative
optimal solutions for player II, but all involve a mixed strategy.  Any pure
strategy adopted by player I will result in a sure win for player II.
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24.3 What Makes Games Interesting
All the examples we have described have simple solutions.  The optimal strategies for both
players are determined entirely by the payoff matrix and may be described before the game
is played.  We might rank the three cases in terms of simplicity of analysis and play.

• The solution is determined by dominance.  Here all but one strategy for each player
is determined by observation and elimination.  One might suggest that the
eliminated strategies were redundant in the first place since they add nothing to the
opportunities available to the players.  The game really has only one rational
strategy for each player.

• Minimax strategies determine a stable solution.  Here the strategies are beneficial if
the opponent makes the wrong play.  Intelligent and rational players, however, will
always select the saddle point strategy.  The game could be played sequentially with
either player going first and revealing his or her selection.  The opponent can't
improve the result with the added information.

• Minimax strategies do not determine a stable solution.  Here the players must select
a strategy from several possibilities using a probability distribution.  The results of
a single play are uncertain but the expected value is fixed.  It is important that the
first player's selection be hidden because the second player could take advantage of
the result.

Games of this type are really not very interesting because once the analysis is
complete, there is no point in playing the game.  For a variety of reasons, competitive
situations found in practice do not have this characteristic.

• There are too many strategies to enumerate.  This is typical of board games such as
chess.  A strategy must describe all possible actions in all possible situations.  For
chess as for most interesting games, the number is simply to large to imagine or
evaluate.

• Players are not always intelligent or rational.  Once we assume this for one player,
the other player might try to take advantage of this circumstance.

• There are often more than two players.  Now we have the possibilities for
cooperation or collusion between players.

• Real-life situations are not zero-sum games.  In practice, it may be more appropriate
to specify for each strategy the utility of the results for both players.  In such cases,
cooperation may be a better policy than competition.

The subject of game theory has something to say about each of these situations, but the
solutions are not simple enough to describe in this introductory discussion.  Certainly,
continued study of this subject is justified since so many real decision situations involve the
interaction two or more individuals.
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24.4 Exercises
For Exercises 1 through 4 use the given payoff matrix for player I to find the optimal
minimax strategies for both players.

1.
Player II

1  2 3 4

1 –1 0 4 –1

2 5 1 3 1

Player I 3 –2 0 –1 4

4 –3 –2 4 5

2.
Player II

1 2 3 4

Player I 1 –2 3 5 2
2 5 –1 –2 0

3.
Player II

1  2 3 4

1 5 3 6 1
 Player I 2 4 2 2 4

3 3 4 3 5

4.
Player II

1  2 3 4 5

1 –7 –3 0 4 6
2 1 –5 –2 0 2

Player I 3 5 0 –5 –8 –6
4 –3 –2 4 0 2
5 –5 –2 1 5 0

5. Two companies, A and B,  are bidding on a contract for the government.  Three bids
are possible: low, medium, and high.  The lowest bid placed by the two companies
will be chosen, but if the bids are equal, the government will choose company A over
B.  Both companies have the same data regarding the cost of the project.  If a
company wins with the low bid, the costs will equal the income and no profit is made.
If a company wins with a medium bid a profit of 5 is realized.  If a company wins
with a high bid, a profit of 10 is earned.  The table below shows the payoff matrix for
company A.  If the company losses the bid to its opponent, this is counted as a loss
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with respect to the relative position of the two companies.  The bids are sealed and the
companies have no information about each other except that they both use a minimax
policy.  What is the optimum bidding policy for the two companies?  Who will win
the contract?  What profit will be made?

Company B strategy
Low Med. High

Company A Low 0 0 0
strategy Med. 0 5 5

High 0 –5 10

6. At a particular point in a football game, the offensive team and the defensive team must
select a strategy for the next play.  Both teams have the same statistical information
that predicts the expected yardage to be gained for various combinations of offensive
and defensive strategies.  The information is given in the table, which shows yards
gained for the offensive team for every combination.  Determine the minimax policy
for both teams.  What is the expected gain in yardage?

Payoff Matrix for Offense (yards gained)

Defensive strategy
1  2 3 4 5

1 –2 0 2 4 5
Offensive 2 –2 –4 0 5 10

strategy 3 10 0 –3 5 10
4 20 15 5 –5 0
5 30 20 8 0 –10

7 In the previous exercise, if the offensive team could add 5 to any individual cell in the
table, where should the increment be added to most increase the expected payoff?
How will the strategies and the value of the game be changed?
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