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Game Theory

Most of operations research deals with problems that are very complex or that in some way
are affected by random events. When the problems are deterministic, alarge variety of
them can be solved, at least conceptually, with the methods discussed in the first part of the
book regardless of their complexity. Randomness clouds the definition of optimality and
makes the decision process that much more difficult due to our inability to predict outcomes
with certainty. The methods of operations research provide the analytic tools that give
additional information to the decision maker, and in many cases allow optimal decisionsto
be prescribed. In Chapter 23, we considered decision analysis, a process that |eads to
policiesthat are optimal even in the presence of random events. With decision analysiswe
are assuming that nature, our “opponent,” isfair or unbiased. The probability distribution
for arandom event may be affected by previous events and decisions, but the event is
selected by afair lottery according to the given probability distribution.

The decision problems we often involve another individual who may be an
antagonistic opponent. We must make decisions knowing that the result will be governed
in part by the actions of a competitor. Husbands and wives must deal with each, parents
with their children, businesses with their competitors, military commanders with their
enemies, and game players with their opponents. The part of operations research that
addresses thiskind of situation is called game theory. Although clearly applicable to games
asthe nameimplies, it is appropriate in awide variety of contexts in which one must make
a decision whose outcome will be determined by the actions of one or more individuals.

We introduce the subject in this chapter by considering avery smple game with
two opposing players. It iscalled azero-sum gamein which again to one player isaloss
to the other. All information concerning the game is known to both players; i.e., thereis
complete information. The players are said to berational and intelligent. A rational person
isonewho actsin such away asto maximize his or her expected payoff or utility as
economists would say. An intelligent person is one who can deduce what his or her
opponent will do when acting rationally.

24.1 Basic Models

With agame theory model, we provide a mathematical description of asocial situationin
which two or more individuals, or players, interact. Such a broad scope allows many
kinds of models. There may be two players or many. The players may be competitive or
cooperative. With more than two players there may be collusion among subsets of the
players. Games may involve several sequentia steps or one step for each player.
Competitive situations may be repeated or be faced only once. Information concerning the
rules of engagement and the payoffs may be known to all players or imperfectly known to
some. In an introductory discussion, we can only touch on thisimportant and valuable
subject. We restrict attention to the simplest model -- the two-person, zero-sum game.

The Two-Person, Zero-Sum Game

Consider a competitive situation with two players and arbitrarily assume that
player | isawoman and player Il isaman. The gameis specified by the
sets of strategies available to the two players and the payoff matrix. The set
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2 Game Theory

of strategiesfor player | isindexed from 1 through m. The set of strategies
for player Il isindexed from 1 through n. The payoff matrix (see Table 1)
specifiesthe gain or profit to player | for every strategy pair (i, j).

Table 1. Payoff Matrix

Player ||
1 2 . n
P11 P12 - P1n
Player| 2 Poq Poo - Pon
m pml pm2 v pmn

The two players select their strategies simultaneoudly, and when
player | usesstrategy i and player Il uses strategy |, player | receives the
payoff p; from player Il. A positive number isagain for player | and a
negative number isaloss (again for player 11). A gaintooneplayerisa
loss to the other, thus providing the zero-sum feature. The payoff obtained
when the two players select their strategies is the value of the game. Each
player know all strategies available to the other, and they both agree on the
payoff matrix.

We will seethat thisis not avery interesting game because the
optimal strategies for both players can be determined in advance and neither
player can improve his or her position by changing the prescribed strategy.
Solutions are either pure or mixed strategies. With apure strategy a player
chooses only one strategy in aplay of the game. In amixed strategy, a
player chooses one of several strategies according some probability
distribution.

Tic-Tac-Toe

To illustrate, consider this very simple example of atwo-person game. As
most readers will know, the game is played on the diagram shown in Fig.
la. Thefirst player begins by entering an X in one of the nine available
gpaces. The second player placesa O in one of the eight remaining places.
The two players continue taking turns in this fashion (first X and then O)
until either all squares arefilled, it becomes clear that one player has won,
or it isclear that neither player can win. The gameiswon if three of one
player's symbols are arranged in a straight line either horizontally, vertically
or diagonally. Figure 1 shows an example where the sequence of playsb
through hresultsin awin for X. The game frequently endsin atie with no
player winning, as shown in Fig. 1i.




Basic Models

a

3 |a 5

2 |1 6

9 |8 7
d.

X plays (awin is assured)
g.

O blocks X from winning

X goesfirst

O blocks X win.
h.

/

/

4

/

X playsto awinning game

Figure 1. Thetic-tac-toe game
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To analyze this game, one might use a decision tree as described in
Chapter 23. Asall experienced players of know, the result of the gameis
completely determined after the first X and the first O have been played,
assuming neither player makes amistake. Representing awin for X asthe
value 1, atiewith a0, and awin for O asa-1, Fig. 2 showsthe decision
tree based on the first two plays. Because the gameissymmetricitisonly
necessary to consider squares 1, 2 and 3 for player | and a reduced number
of squaresfor player I1. Any moves |eft out are symmetric to one of those
shown. Because player | goesfirst, her three possible plays are in square
1, 2 and 3. Given the choice of player I, player Il has the several remaining
sguares as a possible response.
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Figure 2. The decision tree showing the possible results of tic-tac-toe

The results of the game given the first two plays are shown in the
figure. The game shown in Fig. 1b - Fig. 1h follows the top path of the
decision tree where player | uses square 1, the center, and player |1 follows
with square 2. The ultimate result isawin for player I. The complete game
in Fig 1i isthe result obtained when player | starts with square 2 and player
Il counters with square 3. The game is aways a tie when the successive
plays are made intelligently.

Thetree shown in Fig. 2isamodel of the game and is called the
extensive form. It depicts the sequential nature of the game. Even for this
simple situation, the extensive form can be very large. If we had not
recognized the symmetry of the game and the fact that only the first two
moves are important, the tree would be impossible to show on asingle

page.

The Strategic Form

Game theory uses an dternative model called the strategic form which
represents the game as amatrix. The assumption of the strategic formis
that both players select strategies before the gameis played and smply act
out those strategiesin turn. A strategy must describe a plan of action for
every possible situation.

Asafirgt attempt, we might define a strategy for player | as her first
play and the strategy for player Il as hisresponse. This definition does not
work for player I1. It does not prescribe what player Il should do if player |
uses the square that he was intending to use.

To construct the strategic form of the tic-tac-toe game, we define the
following strategies regarding the first moves for the two players.
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Player I: Select one of the nine squares on the game board.

Player I1: Select one of the nine squares on the game board. If player |
uses the selected square,

e putanOinsquare 3,5, 7, or 9if an X isin square 1 (center)

e putanOincdl 11f an X isincdl j.
These are complete strategies. The players can select them before the game
begins and follow them through the first two plays. The strategic form of

the gameisrepresented in Table 2. The entriesin the table are the values of
the game for every possible selection of strategies.

Table 2. Strategic Form of the Tic-Tac-Toe Game
Strategy for Player I1, O
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Conceptually, every game that can be described by an extensive
form like that in Fig. 2 has an equivaent strategic form similar to the one
shown in Table 2. For convenience, we will use the strategic form for
further analysis. It isequivalent to the payoff matrix introduced earlier.
The payoff matrix together with the descriptions of the strategies constitute
the model for the two-person, zero-sum game.
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24.2 Solution Methods

We solve the game by prescribing the optimal strategies each player should adopt. The
gameis played by the players following the strategies. Solutions may involve pure
strategies, in which each player uses only one play, or mixed strategies, in which plays are
selected randomly according to some probability distribution. The value of the gameisthe
payoff obtained when both players follow their optimal strategies.

Dominated Strategies

A dominated strategy is astrategy that yields a payoff for one of the players
that islessthan or equal to the payoff for some other strategy for all actions

of the opponent. For player |, strategy i isdominated by strategy Kk if
Bij £ Pk forj =1,..,n Q)

In other words i isdominated by k if every element of row i in the payoff
matrix is lessthan or equal to every corresponding el ement of row k.

For player |1, astrategy isdominated if every element of acolumnis
greater than or equal to every corresponding element of some other column.
Strategy j is dominated by strategy k if

pj ® pfori=1,..,m )

It should be clear that dominated strategies will not be used in the
solution of the game. If adominated strategy is used, a better solution is
always obtained by replacing it with the dominating strategy. Thefirst step
in the solution processisto find and eiminate the dominated strategies from
the game.

Using the tic-tac-toe payoff matrix in Table 1, we observe that
column 1 issmaller than every other column. Strategy 1 for player 11
dominates every other strategy. We can, therefore, eliminate all other
columns. The resulting matrix has one column with all zeroes. For player
I, al strategies are equal, and the game will alwaysend in atie. The
optimum strategy is

Player I: Select one of the nine squares of the game board
Player I1: Always use the center square unless player | choosesit
If player | usesthe center square, put an O in square 3, 5, 7, or 9.

The dominance argument shows what many have discovered by trial
and error, tic-tac-toe is not a very interesting game for intelligent players.
One can win only if one of the players makes a mistake.

We use the more interesting hypothetical payoff matrix in Table 3
for another illustration. To describe the sequence of operations in a solution
we call row i and column j of the current payoff matrix r; and C;
respectively. We say current because the payoff matrix changes with the
elimination of strategies. Then

* row i isdominated by row Kk if rj £ ry, and
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* columnj isdominated by row k if ¢j ® ck.

Table 3. Payoff Matrix with Dominating Strategies

Player I
1 2 3 4
1 5 4 -3 —2
Payerl 2 2 -1 —2 0
3 2 4 -1 0
4 1 3 2 1

We start with player | and find any dominated strategies. To do this
we must compare every pair of rowsto seeif the condition identified by
Equation (1) is satisfied. Dominated strategies are eliminated by deleting the
associated rows from the payoff matrix. For player I, we find and
eliminate dominated strategies by comparing all pairs of columnsto seeif
the Equation (2) is satisfied. The associated dominated columns are then
deleted. Since deleting rows and columns may uncover new dominated
strategies, we continue the process until no dominated strategies remain for
either player. If only one strategy remains for both players, these strategies
are the solution to the problem.

We solve the example problem by first noting that
r,£r3 €43 cyandc,? cy.
Strategy 2 isdominated for player | and strategies 1 and 2 are dominated for

player I1. Deleting the associated rows and columns of the dominated
strategies we obtain a new payoff matrix.

Player 11

3 4

1 -3 —2

Playerl 3 -1 0
4 2 1

Now

and the new matrix is

Player1 4 2 1

When only one row (or column) remains, it is always possible to
reduce the number of columns (or rows) to one by dominance. We then
find the solution to the game with both players using strategy 4. The value
of the gameisequal to 1.
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Say the game was sequentia rather than both players selecting their
plays simultaneously. Table 4 gives the payoff matrix when player | goes
first. One might suspect player |1 has the advantage since hisplay is
obvious given the selection of player 1.

Table 4. Payoff Matrix when Player | Goes First
Player II Best

1 2 3 4 forll Vaue
1 5 4 -3 -2 3 -3
Player| 2 2 -1 -2 0 3 -2
3 2 4 -1 0 3 -1
4 1 3 2 1 |1lor4d 1

When player | selects any strategy except 4, player 11 will do better. But
knowing the payoff matrix and assuming player 11 isrational, why should
she use any strategy except 4? The only rational solution isfor player | to
use strategy 4 and player |1 to counter with strategy 1 or 4.

Saddle Point Solutions

Using dominance, astrategy is eliminated if it isinferior to (or at best no
better than) some other strategy in all respects. This uses what most would
consider as areasonable characteristic of rationality, it is better to recelve a
larger payoff than asmaller payoff. What if dominance cannot be used to
eliminate al but one strategy as in the matrix of Table 5?

Table 5. Payoff Matrix for Saddle Point Example

Player I
1 2 3
1 5 1 0
Player| 2 0 2 7
3 4 3 4

Consider the decision problem of player 1. In the worst case assume
that her opponent knows her decision. If she chooses strategy 1, he will
choose strategy 3 for avalue of 0. If she chooses strategy 2, he will choose
strategy 1 for avalue of 0. If she chooses strategy 3, he will choose
strategy 2 for avalue of 3. Thisinformation is obtained by selecting the
minimum value for each row and the associated best strategy for player I1.

Using asimilar analysisfor player Il. If he chooses strategy 1, she
will choose strategy 1 for avalue of 5. If he chooses strategy 2, she will
choose strategy 3 for avalue of 3. If he chooses strategy 3, she will choose
strategy 2 for avalue of 7. Thisinformation is obtained by selecting the
maximum value for each column and the associated best strategy for player
|. Table 6 summarizesthe information for both players.
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Table 6. Payoff Matrix with Saddle Point Strategies

Player || Minimum Strategy
1 2 3 of row for 1l
1 5 1 0 0 3
Playerl 2 0 2 7 0 1
3 4 3 4 3 2
Maximum for column 5 3 7
Strategy for | 1 3 2

If both players assume their opponents are rational and intelligent,
the obvious conclusionisthat player | should select strategy 3 and player 11
should select strategy 2, and the value of the gameis 3. When player |
selects strategy 3, any other choice beside strategy 2 for player 11 will result
inagreater lossfor player 11. When player |1 selects strategy 2, any other
choice except strategy 3 for player | resultsin asmaller return for player I.

Thecell (3, 2) iscalled the saddle point of the game. The two
players are using the minimax criterion for strategy selection. Not every
game has a saddle point, but when it does the saddle point is the solution of
the game.

In genera terms, the pure minimax strategy for player | isthe
strategy that maximizes her minimum gain. The payoff for this strategy is
v, where

vi=Maxi=1. m{Min=1_ npij} =Max{0, 0,3} =3

The row that determines the maximum is the pure minimax strategy for
player I. Thisisrow 3 for the example. The pure minimax strategy for
player 11 isthe strategy that minimizes the maximum gain for player I. The
payoff for this strategy isv,, where

VU :Miri:]_ n{MaXi:]_ mp”}:M|n{5,3,4}:3

The column that obtains the minimum is his pure minimax strategy for
player Il. Thisiscolumn 2 for the example.

The quantitiesv, and v, defined above are called the lower and

upper value of the game, respectively. When these two values are the same,
the common result, v = v, = v/, iscaled the value of the game. When the

same element of the payoff matrix determines the minimax strategies for
both players, the upper and lower values are equal, and that element is
caledthesaddlepoint. A stable gameisagame with asaddle point. In
this game, both players can adopt the pure minimax strategy and cannot
improve their positions by moving to any other strategy.

Because both players are intelligent, they both know the payoff
matrix. Because they are both rational, the only possible solution for this
game isthe saddle point.

An unstable gameis a game with no saddle point. In this case upper
and lower values are not equal. A player cannot adopt the pure minimax
strategy without providing the opportunity for the opponent to gain an
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improved return. The next section describes how this situation is handled
with mixed strategies.

Mixed Strategies

Consider the payoff matrix in Table 7. We see for this matrix
Vv, = MaXrowd Mincolumns pij} =MaXron{ 2, 1} =1
The pure maximin strategy for player | is strategy 2.
Vy = Mincolumns {Maxrows pjj} = Min{4, 4, 6, 7} = 4.

The pure minimax strategy for player 11 isstrategy 1. Thus, the lower and
upper bounds on the value of the game are not the same so no saddle point
exigts. If both players used their pure minimax strategy, the payoff for the
game would be 2; however, thisis not the solution. Rather the solution is
one in which both players use a mixed strategy.

Table 7. Payoff Matrix for Example Using Mixed Strategies

Player Il Minimum Strategy
1 2 3 4 of row for 1l
Player | 1 4 0 6 —2 —2 4
2 2 6 1 7 1 3
Maximum for column 4 6 6 7
Strategy for | 1 2 1 2

A mixed strategy is procedure for playing the game by which each
player chooses the strategy using a discrete probability distribution. For

player I, the probabilities are (Xq, X», ..., X,;,), where x; isthe probability
that strategy i will be chosen.  For player 11, the probabilities are (y4, Yo,

...,Yp), Where y; isthe probability that strategy j will be chosen. Both sets

of probabilitiesmust sumto 1. The expected value of the payoff of the
game when the players use a mixed strategy.

Expected payoff = & & p, XY, -

i=1j=1

a Xi = 11 a yj =1
i=1 j=1
Each player will use the mixed strategy that will minimize hisor her

maximum expected loss. In terms of the payoff, player | will adopt a mixed
strategy that will maximize the minimum expected payoff, and player 1 will
adopt a mixed strategy that will minimize the maximum expected payoff . If
both players follow their minimax strategies, the value of the game, v, is
equal to the expected payoff.

To describe the logic of the mixed strategy, consider the problem of
player | when sheis selecting the probabilities (X4, X,, ..., X,). She knows
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that the expected payoff of the gameto player | when player |1 uses pure
strategyj is

é R % forj=1,... ,n
i=1

Asan intelligent and rational person, player Il selects a strategy that will
assure that the value of the game for player I, v, islessthan or equd to the

expected value for any pure strategy j. Then we can write for each j the
constraint

a pi%3v, forj=1,..n.
i=1

Now player | will select values for the probabilities that will maximize her
return. Together thislogic leads to the linear programming solution for
player I's strategy.

Maximizev,

subject to ém X3V, i=1...n (33
i=1
ém_ x=1 (3b)
i=1
X320, i=1..m (30)

The last two constraint sets assure that the decision variables x; define an
acceptable probability distribution.
It is not hard to show that the dua of thismodel solvesthe selection

problem for player 1. Assigning the dual variablesyj to the constraintsin
the set (3a), we obtain the dual problem.

MinimizevII

subject to é_ Y, EVvy, 1=1,...m (49)
i=1
ay-=1 (4b)
j=1
yj3 0, jzl,... ,Nn (4C)

Solving either one of these linear programs yields the optimal
solution for one player. The dual values provide the solution for the other
player.

We repest the payoff for the example matrix in Table 8 so that we
can construct the linear programming model.
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Table 8. Payoff Matrix in Table 7

=
N

3
Playerl 1 4 0 6 —2
2 2 6 1

The linear programming model for player | is
Maximize v
subjectto 4x; +2x,3 v
6X53 v
6x1 + lx2 3 v
—2X1+ 1X53 v
Xq* Xy = 1
X130,%x,30
and the dua model for player 11 is
Minimizev
subjectto 4y, +0y3 =2y, £V
2yl+6y2+ 1y3+7y4£v
Y1tYa+tyz+tys=1
y120,¥,20,¥3%0,y,2 0

Solving, we get the solution
(X1, Xo) = (5/11, 6/11) with v = 32/11

for the primal problem and
(Y1, Yo Y3, V) = (9/11, 0, 0, 2/11)
for the dual problem.

A Modified Tac-Tac-Toe Game

As another example we modify the tic-tac-toe game so that the players select
their opening moves before the game begins. To give player |1 abetter
chance, we say that player |1 winsif both players select the same square for
theinitial move. Otherwise we proceed to play the game as before. The
new payoff matrix is shown as Table 9.
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Player I:
First play
for X

Table 9. Strategic Form of the Tic-Tac-Toe Game when X goesfirst.
Player II: First play for O

1 2 3 4 5 6 7 8 9 Min
1 -1 1 0 1 0 1 0 1 0 -1
2 0 -1 0 1 1 0 1 1 0 -1
3 0 1 -1 1 1 1 1 1 1 -1
4 0 1 0 -1 0 1 1 0 1 -1
5 0 1 1 1 -1 1 1 1 1 -1
6 0 0 1 1 0 -1 0 1 1 -1
7 0 1 1 1 1 1 -1 1 1 -1
8 0 1 1 0 1 1 0 -1 0 -1
9 0 1 1 1 1 1 1 1 -1 -1
Max O 1 1 1 1 1 1 1 1
We notice from thistable that

v,_:—landvU:O.

This game does not have a saddle point solution. Using the theory of this
section, we can congtruct alinear programming model to find the optimal
strategies:

Player | (X player): Useamixed strategy with x, = 0.5, x5 =0.25 and
X5 =0.25

Player |1 (O player): Use pure strategy 1

The expected value of the gameis 0. Although player 11 can adopt a pure
strategy, it isimportant that player | adopt a mixed strategy, not including
the action of putting an X inthe center. There are anumber of alternative
optimal solutions for player 11, but all involve amixed strategy. Any pure
strategy adopted by player | will result in asure win for player I1.
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24.3 What M akes Games | nteresting

All the examples we have described have smple solutions. The optimal strategies for both
players are determined entirely by the payoff matrix and may be described before the game
isplayed. We might rank the three cases in terms of simplicity of analysis and play.

» Thesolution is determined by dominance. Here al but one strategy for each player
is determined by observation and elimination. One might suggest that the
eliminated strategies were redundant in the first place since they add nothing to the
opportunities available to the players. The gamereally has only one rationa
strategy for each player.

* Minimax dtrategies determine a stable solution. Here the strategies are beneficia if
the opponent makes the wrong play. Intelligent and rational players, however, will
always select the saddle point strategy. The game could be played sequentially with
either player going first and revealing his or her selection. The opponent can't
improve the result with the added information.

* Minimax strategies do not determine a stable solution. Here the players must select
astrategy from severa possibilities using a probability distribution. The results of
asingle play are uncertain but the expected value isfixed. It isimportant that the
first player's selection be hidden because the second player could take advantage of
the result.

Games of thistype areredlly not very interesting because once the analysisis
complete, thereis no point in playing the game. For avariety of reasons, competitive
situations found in practice do not have this characteristic.

» Therearetoo many strategiesto enumerate. Thisistypical of board games such as
chess. A strategy must describe all possible actionsin all possible situations. For
chess as for most interesting games, the number is ssimply to large to imagine or
evaluate.

» Playersare not alwaysintelligent or rational. Once we assume thisfor one player,
the other player might try to take advantage of this circumstance.

» There are often more than two players. Now we have the possibilities for
cooperation or collusion between players.

* Red-life situations are not zero-sum games. In practice, it may be more appropriate
to specify for each strategy the utility of the results for both players. In such cases,
cooperation may be a better policy than competition.

The subject of game theory has something to say about each of these situations, but the
solutions are not ssmple enough to describe in thisintroductory discussion. Certainly,
continued study of this subject isjustified since so many real decision situations involve the
interaction two or more individuals.
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24.4 Exercises

For Exercises 1 through 4 use the given payoff matrix for player | to find the optimal
minimax strategies for both players.

1.

Player Il
1 2 3 4
1 -1 0 4 -1
2 5 1 3 1
Player1 3 —2 0 -1 4
4 -3 —2 4 5

Player 11
1 2 3 4
Playerl 1 -2 3 5 2
2 5 -1 -2 0
Player Il
1 2 3 4
1 5 3 6 1
Player1 2 4 2 2 4
3 3 4 3 5
Player 11
1 2 3 4 5
1 —7 -3 0 4 6
2 1 -5 -2 0 2
Player| 3 5 0 -5 -8 —6
4 -3 -2 4 0 2
5 -5 -2 1 5 0

Two companies, A and B, are bidding on a contract for the government. Three bids
are possible: low, medium, and high. The lowest bid placed by the two companies
will be chosen, but if the bids are equal, the government will choose company A over
B. Both companies have the same data regarding the cost of the project. If a
company wins with the low bid, the costs will equal the income and no profit is made.
If acompany winswith amedium bid aprofit of 5isrealized. If acompany wins
with a high bid, a profit of 10 is earned. The table below shows the payoff matrix for
company A. If the company losses the bid to its opponent, thisis counted as aloss
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with respect to the relative position of the two companies. The bids are sealed and the
companies have no information about each other except that they both use a minimax
policy. What isthe optimum bidding policy for the two companies? Who will win
the contract? What profit will be made?

Company B strategy

Low Med. High
Company A Low 0 0 0
strategy Med.[ O 5 5
High| O -5 10

6. Ataparticular point in afootball game, the offensive team and the defensive team must
select a strategy for the next play. Both teams have the same statistical information
that predicts the expected yardage to be gained for various combinations of offensive
and defensive strategies. The information is given in the table, which shows yards
gained for the offensive team for every combination. Determine the minimax policy
for both teams. What is the expected gain in yardage?

Payoff Matrix for Offense (yards gained)

Defensive strategy
1 2 3 4 5

-2 0 2 4 5
Offensive —2 4 0 5 10
strategy 0 -3 5 10

20 15 5 -5 0
30 20 8 0 -10

gaa b~ wWwDN B
=
o

7 Intheprevious exercise, if the offensive team could add 5 to any individual cell inthe
table, where should the increment be added to most increase the expected payoff?
How will the strategies and the value of the game be changed?
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