
Extra Problems for Chapter 3. Linear Programming Methods

20. (Big-M Method) An alternative to the two-phase method of finding an initial basic
feasible solution by minimizing the sum of the artificial variables, is to solve a single
linear program in which the objective function is augmented by a penalty term
comprising the sum of the artificial variables.  Assuming an artificial variable is
introduced for each constraint, the objective function to be maximized is

z(M) = ∑
j=1

n
 cjxj  –  M ∑

j=1

m
 i

where M is a “large” number.

a. When the solution to the original problem is finite, prove that the solution to the
problem of maximizing z(M) subject to the original set of constraints is identical
to the former.

b. If the solution to the original problem is unbounded, how will this manifest itself
in the solution to the modified problem with objective function z(M)?

c. If the solution to the original problem is infeasible, how will this manifest itself
in the solution to the modified problem with objective function z(M)?

21. Solve the LP given in Exercise 19 using the big-M method discussed in Exercise 20.

22. Put the problem below into the simplex form by first multiplying each constraint by
–1 and then adding slack variables.  Let the slacks provide an initial basic solution.
Solve using the dual simplex method.

Minimize  z = 3x1 + 7x2 + 4x3 + 5x4

subject to 2x1 + x2 + 3x3 + 4x4 ≥  7

x1 + 2x2 + 4x3 + 2x4 ≥  6

3x1 + 4x2 + x3 + x4 ≥  5

xj  ≥ 0,  j = 1,…,4

23. The optimal tableau for the following linear program is given below.

Maximize  z = 5x1 – 3x2 + 4x3 – x4

subject to 3x1 + 4x2 + 3x3 – 5x4 ≤ 13

5x1 – 3x2 + x3 + 2x4 ≤ 15



xj  ≥ 0,   j = 1,…,4

Coefficients
Row Basic RHS

0 1 5.181 1.637 0 0 0.819 1.546 33.82
1 0 2.818 –0.636 1 0 0.182 0.455 9.18
2 0 1.091 –1.182 0 1 –0.091 0.273 2.91

x1z
z

x2 x3 x4

x3

x4

xs1 xs2

a. If the right-hand sides of the original two constraints are changed to 20 and 5,
respectively, the rightmost column of the tableau becomes (24.110, 5.915,
–0.455).   Write out the new tableau for this basic solution and use the dual
simplex method to reoptimize.

b. Starting from the tableau given above, add the constraint, x1 + x2 + x3 + x4 ≤ 10.

Put the tableau into the simplex form and use the dual simplex method to find the
new optimal solution.

24. Let uj be an upper bound for xj.  It is always possible to solve an LP that contains

simple variable upper bounds by adding the constraints xj ≤ uj to the model.  This is

inefficient, however, because each such constraint increases the size of the basis by
one; the work required to solve an LP goes up accordingly.  Fortunately, the simplex
algorithm can be modified to account implicitly for simple upper bounds.  This
means that they don’t have to be added to the tableau as a separate row.

a. When the bounded variable simplex method is used, variables at either their
lower or upper bound are generally considered nonbasic.  How should the rule
used to select an entering variable be modified to account for a variable that is
nonbasic at its upper bound.  Hint: refer to the interpretation of the objective
coefficients in Eq. (6) in Section 3.4 as marginal values.

b. How should the optimality test be modified to account for variables at their
upper bound.

c. Modify Definition 5 regarding degeneracy when variable upper bounds are
treated implicitly by the simplex method.  Should Definition 8 be modified as
well?  Explain.

d. Explain how the ratio test used to determine the leaving variable has to be
modified to account for simple upper bounds.  Hint: there are three cases that
must be considered.

25. Linear programming may be used to solve a relaxation of an integer program.  The
problems below represent binary integer programming models in which the
requirement that the variables be either 0 or 1 has been replaced with the less re-
strictive requirement that the variables be between 0 and 1.  The bounded variable
simplex algorithm is particularly useful for solving this kind of problem since all the
structural variables are bounded by 1.



a. Referring to the modifications suggested in Exercise 24, solve the following
linear program with the bounded variable simplex method.

Maximize 84x1 + 48x2 + 25x3 + 29x4 + 128x5

subject to 49x1 + 30x2 + 19x3 + 29x4  +  91x5 ≤ 130

0 ≤ xj  ≤ 1,   j  = 1,…,5

b. Continuous knapsack problem. Develop a simple algorithm for solving the single
constraint linear program

Maximize   z = ∑
j=1

n
 cjxj

subject to ∑
j=1

n
 ajxj ≤ b

0 ≤ xj  ≤ 1,   j  = 1,…,n

 Solve the linear program in part (a) with your algorithm.

26. For the problem below, construct the tableau with the following information:

(i) xs1, xs2 and xs3 are the slack variables for the three constraints,

(ii) x2, x4, xs2 and xs3 are nonbasic,

(iii) x1, x3 and xs1 are basic,

(iv) upper bounds on xj are treated implicitly.

Manipulate the tableau to obtain the simplex form and use the bounded variable
simplex technique mentioned in Exercise 24 to obtain the optimal solution.

   Minimize  3x1 + 7x2 + 4x3 + 5x4

   subject to  2x1 +   x2 + 3x3 + 4x4 ≥ 6

x1 + 2x2 + 4x3 + 2x4 ≥ 6

3x1 + 4x2 +   x3 +  x4 ≥ 6

0 ≤ xj  ≤ 1,  j = 1, 2, 3, 4



31. Starting form the tableau given below, use the usual rules for selecting the entering
and leaving variables, and perform two iterations of the simplex method.  Show the
corresponding tableaus in their entirety.

Coefficients
Row Basic RHS

0 1 0 –3 0 0 –5 20
1 0 0 2 1 0 4 10
2 0 1 –1 0 0 2 0
3 0 0 3 0 1 0 15

x1z
z

x2 x3 x4 x5

x3

x1

x4

32. From the tableau given in Exercise 31, determine the original formulation of the
problem, assuming that x3, x4 and x5 are slack variables.

34. Solve the linear program below to completion by hand.  Comment on any
characteristics the final solution may possess.

Maximize  z  = 2x1 – x2 + 3x3 + 5x4

subject to x1 – x2 – 3x3 < 10

–2x1 + x2  – 4x4 < 5

5x3 + 4x4 < 20

xj ≥ 0,   j = 1,…,4

40. A linear program is given below along with the optimal tableau.

Maximize  z = 5x1 – 3x2 + 4x3 – x4

subject to 3x1 + 4x2 + 3x3 – 5x4 ≤ 13

5x1 – 3x2 + x3 + 2x4 ≤ 15

xj ≥ 0,   j = 1,…,4



Coefficients
Row Basic RHS

0 1 5.181 1.637 0 0 0.819 1.546 33.82
1 0 2.818 –0.636 1 0 0.182 0.455 9.18
2 0 1.091 –1.182 0 1 –0.091 0.273 2.91

x1z
z

x2 x3 x4

x3

x4

xs1 xs2

a. For this solution give the matrices B, B–1, xB, cB, and b.

b. What are the primal and dual solutions given by the tableau?

c. Which constraints are tight and which are loose for the optimal solution?

41. In each case below, say as much as you can about the basic solution associated with
the given data.

a. B–1 = 






0 1 0

–1 1 0
2 –2.5 1

  and  b = 






8

6
5

b. B–1 = 






0 1 0

–1 1 0
2 –2.5 1

  and  b = 






8

8
4

42. What can you say about the next basic solution when given the information below?
Assume that the entering variable has a negative reduced cost.

a. B–1 = 






0 1 0

–1 1 0
2 –2.5 1

 ,  b = 






4

8
14

 ,  entering column As = 






1

–1
–4.5

b. B–1 = 






0 1 0

–1 1 0
2 –2.5 1

 ,  b = 






4

8
14

 ,  entering column As = 






2

1
–1.25

43. Consider the following linear program.

Maximize  z = 2x1 + 3x2 + x3 + 4x4

subject to x1 – x3 + x4 ≥  5



–x1 + 2x2 + x4 ≤  6

x2+ 2x3 + 0.5x4 ≤  8

xj ≥ 0,   j = 1,…,4

Let the slacks be variables x5 through x7, and let x  be the artificial variable
introduced for the first constraint.  The problem is to be solved with the revised
simplex algorithm coupled with the two-phase method.  Perform two complete
iterations of the algorithm using the “most negative reduced cost” rule to determine
the variable to enter the basis.  Show the basis inverse after each iteration.

44. You are given the following linear program.

Maximize  z =x1 + 2x2 + 3x3

subject to x1 + 2x2 + 3x3 ≥ 6

3x1 + 2x2 + x3 ≥ 6

x1 + x2 + x3 ≤ 10

x1 ≥ 0,  x2 ≥ 0,  x3 ≥ 0

a. Let x4, x5 and x8 be the slack variables for the three constraints, and let x6 and x7
be the artificial variables for the first two constraints.  Write out the problem that
is to be solved in phase 1.

b. Perform the first iteration of the revised simplex method for the problem defined
in part (a).  Complete the iteration through the pivot operation that shows the
new basis inverse.

c. At the end of phase 1, the basic variables are (in this order) x3, x1 and x8 (the

slack variable for the third constraint).  The corresponding basis and basis
inverse are shown below.  Perform the next revised simplex iteration appropriate
for this problem.  Complete the iteration through the pivot operation that shows
the new basis inverse and calculate the new BFS.

B = 






3 1 0

1 3 0
1 1 1

  and  B–1 = 






3/8 –1/8 0

–1/8 3/8 0
–1/4 –1/4 1

d. At optimality x3, x4 and x5 are the basic variables.  The corresponding basis and

basis inverse are shown below.  What are the primal and dual optimal solutions?



B = 






3 –1 0

1 0 –1
1 0 0

  and  B–1 = 






0 0 1

–1 0 3
0 –1 1

e. Using the solution implied by the information in part (d), change the RHS of
constraint 3 in the original problem to 6.  Perform one iteration of the dual
simplex algorithm in an attempt to make the solution feasible.  Go so far as to
determine the values for the variables in the next basic solution.  Has feasibility
been obtained?

45. (Simple Upper Bounds) The problem below has one constraint with simple upper
bounds on the variables.

Maximize  z = 84x1 + 35x2 + 25x3 + 29x4 + 128x5

subject to 50x1 + 30x2 + 20x3 + 30x4 + 100x5 ≤  90

0 ≤ xj ≤ 1,   j  = 1,…,5

Consider the solution with x1 and x2 at their upper bounds, x4, x5 and x6 (the slack

variable) at zero, and x3 basic.  For the simplex method modified to accommodate

simple upper bounds as discussed in Exercise 24, find the following for this solution.

a. The basis matrix.

b. The basis inverse.

c. The dual variables.

d. The reduced costs.

e. From the reduced costs, tell which variables are candidates to enter the basis.

f. If x1 is allowed to decrease from its upper bound, does x3 increase or decrease?

How much can x1 decrease?


