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Chemical Processing Example

In this appendix, we consider a somewhat larger problem as a medium for the discussion
of the modeling process.  The example is especially informative in that it incorporates a
number of features found in many real-world applications.

Problem Statement

A company manufactures three products X, Y and Z using raw materials
A, B and C in various proportions.  Products X and Y are made by a
chemical process that mixes all the materials.  The mixture must be at least
10% (by weight) material A and at least 5% material B.  The remainder of
the mixture is material C.  The output of the mixture is 10% waste, 70%
product X, and 20% product Y.  The blending process can handle up to
10,000 pounds of input material per month.

A second chemical process that combines only materials B and C
can be used to make products Y and Z.  The input proportions for this
process by weight are 30% material B and 70% material C.  The output
consists of 30% product Y and 60% product Z.  The remaining 10% of the
output is material A which is used in the first process.

Product X can be sold for $5 per pound and has a maximum
monthly demand of 5000 pounds.  As much as 500 pounds of Y can be
sold for $11 per pound, while any additional amount can be sold for $8 per
pound.  Product Z can be sold for $10 per pound.  At least 1000 pounds of
product Z must be processed and sold every month.

Raw materials A, B and C can be purchased for $4, $3 and $1 per
pound, respectively.  No more than 5000 pounds of material B can be
purchased each month, while A and C are available in unlimited
quantities.

The problem is to determine how much of products X, Y and Z to
produce and how much of materials A, B and C to buy during the month.
The objective is to maximize profit.

Model

At first glance the analyst might list the decision variables as X, Y, Z, A, B,
and C corresponding to the six problem elements, respectively.  In many
cases, however, clarity of modeling is served by defining extra variables
not immediately apparent from the statement of the problem.  The goal in
modeling should be clarity rather than parsimony with respect to the
number of variables and constraints.  Computers are powerful enough to
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allow some excesses in this regard.  We often start the modeling process
by defining variables for every conceivable decision.  After the objective
function and constraints are expressed in algebraic form, redundant or
unnecessary variables can be removed.

Each variable and constraint should be assigned a name related to
the quantity or restriction that it represents in the problem.  It is common
to use names that are abbreviations, acronyms, or a combination of letters
and sequential reference numbers.  General variable names such as X and
Y should be avoided unless they represent, as in this problem, relevant
quantities.  The definition of the variables, written out in explicit terms,
should accompany the model presentation.

Flow Diagram

When appropriate, it is useful to develop a flow diagram for the problem
or process under investigation.  Many scheduling, production planning,
blending, network and related problems have physical input-output
relationships that can be easily described with graphical constructs.  A
common type of input-output relationship derives from the principle of
conservation of flow.  The quantity being conserved can be a fluid,
money, electric power, or any type of resource.  A flow diagram, similar
to the one shown in Fig. 19 for our problem, can be a real help in proper
modeling.

As noted in Section 2.6, the circles in the figure are called nodes
and the directed line segments (arrows) are called arcs.  The arrangement
of arcs and nodes shows the flow of materials in this problem and help to
identify the variables that will be used.  The model is to describe the flows
at steady state so there is no logical conflict, for example, in specifying the
output of node M2 as an input to node A-CON.

From the diagram we define the decision variables for the model. It
is good practice to indicate the dimensional units along with the
definitions.  Upper case letters with no subscripts are used for variable
names because this is the format required by most computer codes.
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Figure 19.  Flow diagram for chemical processing example

Variable Definitions

Raw Materials

A, B, C : quantities of raw materials A, B and C purchased (lb.)

Mixture 1

M1 : amount of mixture 1 (lb.)

AM1, BM1, CM1 : quantities of raw materials A, B and C input to
mixture 1 (lb.)

XM1, YM1 : quantities of products X and Y produced by mixture 1
(lb.)

WM1 : amount of waste produced by mixture 1 (lb.)

Mixture 2

M2 : amount of mixture 2 (lb.)

 BM2, CM2 : quantities of raw materials B and C input to mixture 2
(lb.)

YM2, ZM2 : quantities of products Y and Z produced by mixture 2
(lb.)

AOM2 : quantity of raw material A produced by mixture 2 (lb.)

Finished Products

X, Y, Z : quantities of products X, Y and Z produced (lb.)

Y1 : quantity of product Y sold for $11 per pound (lb.)

Y2 : quantity of product Y sold for $8 per pound (lb.)
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Conservation of Flow Constraints

Many of the constraints in this model are taken directly from Fig. 19.
These are the conservation of material flow constraints which require that
the total flow entering a node equals the total flow leaving the node.  In
some processes, flow may be lost due to leakage, evaporation, or spoilage,
or may be increased due to synergy.  Although this is not the case here, we
have seen that such situations can be modeled with gain factors.

Every node in Fig. 19 generates a flow balance constraint.  Each
has been given a shorthand name corresponding to its purpose.  In some
cases, the node name and the related constraint have the same name.
Every term in a constraint, including the constant on the right-hand side,
must have the same dimensional units.  We begin with flow balance for
raw material A at node A-CON.

A-CON : A + AOM2 = AM1

Since solution algorithms require all variables to be presented on the left-
hand side of the relational symbol with only constants on the right, we
rewrite the constraint as

A + AOM2 – AM1 = 0. (1)

The remainder of the conservation constraints are written in a similar
manner.

B-CON :  B – BM1 – BM2 = 0 (2)

C-CON  :  C – CM1 – CM2 = 0 (3)

M1-CONI : AM1 + BM1 + CM1 – M1 = 0 (4)

To facilitate the presentation we have chosen to write the flow balance
constraint at node M1 in two parts.  Constraint (4) defines the input
quantity of the first mix, hence the name M1-CONI.  Together with
constraint (5), conservation of flow at node M1 is assured.  It is
unnecessary to include an additional constraint of the form AM1 + BM1 +
CM1 – WM1 – XM1 – YM1 = 0 because this is essentially what (4) and (5)
say.  Such a constraint would be redundant and might cause numerical
difficulties for a solution algorithm.

M1-CONO :  M1 – WM1 – XM1 – YM1 = 0 (5)

M2-CONI :  BM2 + CM2 – M2 = 0 (6)

M2-CONO : M2 – YM2 – ZM2 – AOM2 = 0 (7)

X-CON : XM1 – X = 0 (8)
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Y-CON : YM1 + YM2 – Y = 0 (9)

Z-CON : ZM2 – Z = 0 (10)

YB-CON : Y – Y1 – Y2 = 0 (11)

Constraint (11) equates the total Y with the two variables identifying the
different revenues associated with the product Y.

Mixture Input Constraints

The next set of constraints defines the input component percentages of the
two mixtures.  The percentage restrictions of materials A and B in mixture
1 are given by AM1% and BM1%, respectively.

AM1% : AM1 ≥ 0.1M1   or   AM1 – 0.1M1 ≥ 0 (12)

BM1% :  BM1 – 0.05M1 ≥ 0 (13)

A corresponding constraint for CM1 requiring mixture 1 to be no more
than 15% of material C would be redundant because the quantity of C
input to mixture 1 is determined by constraint (4) in conjunction with (12)
and (13).

BM2% : BM2 – 0.3M2 = 0 (14)

A similar constraint for CM2 of the form CM2 – 0.7M2 = 0 would be
redundant because the input quantity of material C is determined by
constraint (6) in conjunction with (14).

Mixture Output Constraints

The following constraints define the output components of the mixtures.

XM1% : XM1 – 0.7M1 = 0 (15)

YM1% : YM1 – 0.2M1 = 0 (16)

Given constraints (15) and (16), the quantity of waste produced by the first
process, WM1, is determined by constraint (5).

YM2% : YM2 – 0.3M2 = 0 (17)

ZM2% : ZM2 – 0.6M2 = 0 (18)
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The value of AOM2 is determined by constraint (7) in conjunction with
(17) and (18).

Bound Constraints

Lower bounds of zero on variables are handled automatically by the
computational process so these constraints need not be explicitly included
in a model entered into the computer.  It is traditional, however, to show
these constraints as part of the transcribed model.  They can be stated in a
general way as

all variables ≥ 0. (19)

Lower bounds that are greater than zero should be written out
explicitly.  For our problem, only the output requirement for product Z
falls in this category.

ZLIM : Z ≥ 1000 (20)

Nevertheless, most software packages handle nonzero lower bounds by
transforming them to zero and redefining the variables accordingly.  This
means that any LP can be modified so that all variables have a zero lower
bound.  Details are given in Chapter 4.

Similarly, most LP codes handle simple upper bounds implicitly so
they do not have to be included as structural constraints.  The implicit
approach greatly increases the efficiency of solution algorithms.  For
clarity, though, we always include simple upper bounds in the transcribed
model.  If right-hand-side range sensitivity information is desired, these
constraints should be written out explicitly since most codes only provide
this type of output for structural constraints.  For our problem, the bounds
are as follows.

BNDM1: M1 ≤ 10000 (21)

BNDY1: Y1 ≤ 500 (22)

BNDX: X ≤ 5000 (23)

BMDB: B ≤ 5000 (24)

Objective Function

The final step in model formulation usually involves a statement of the
objective which, for the current problem, is to maximize profit.  Basic
economics tells us that profit = (revenue) – (cost).  In terms of the problem
variables and data, we have

Maximize  P = 5X + 11Y1 + 8Y2 + 10Z – 4A – 3B – 1C. (25)
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Variables not shown in the objective function have zero
coefficients.  It is important that the higher unit revenue output for product
Y, represented by Y1 with a unit revenue of 11, be sold before the lower
revenue output, represented by Y2 with unit revenue of 8.  Because the
revenue for product Y is a concave function of sales, the linear
programming solution correctly sequences the variables.  If the lower
revenue portion were to be sold first, the linear programming model would
give erroneous results.

This completes the setup of the model.  The traditional way to
present the components is with the objective function first, followed by the
structural constraints, the simple upper bounds, and finally the
nonnegativity restrictions.

Modeling Considerations

The example demonstrates that simple problem statements may give rise
to surprisingly large models.  This is, in fact, a very small model as linear
programming goes.  Practical examples can have hundreds of thousands of
variables and tens of thousands of constraints.  Certainly, thousands of
variables and hundreds of constraints are not uncommon, and are readily
solved with standard commercial software.

When one or more equality constraint appear in a model, one
might wonder if some of the variables can be eliminated by substitution.
If an unrestricted variable appears in an equality constraint, we can solve
for that variable and then substitute it out of the model.  For the case
where all the variables in an equality are restricted to be nonnegative and
the constraint is written (or can be rewritten) so that the right-hand side is
nonnegative and all but one of the coefficients on the left have negative
signs, the same approach can be taken.  The variable with the positive
coefficient can then be replaced in the objective function and constraints,
thus eliminating one variable and one constraint.

In the chemical processing example, excluding the nonnegativity
conditions and the simple bounds, 16 of the first 18 constraints are
equalities and are of this form.  A closer examination of those 16
constraints indicates that we could eliminate variables AM1, B, C, M1, M2,
X, Y, Z and constraints (1), (2), (3), (4), (6), (8), (9), (10).  Note that it is
not possible, for example, to eliminate constraint (5) because once M1 is
substituted out using constraint (4) we must replace it with A + AOM2 +
BM1 + CM1 in (5).  The resultant constraint does not satisfy the
elimination criteria.

After making all possible substitutions we would be left with a
total of 16 constraints as opposed to the original 24.  This would reduce
the size of the model considerably but, in general, it is not a good idea to
do this.  A great deal of mathematical manipulation is required in the
process and errors are likely.  In addition, it is very difficult to relate the
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resulting model to the original situation.  Compactness is achieved at the
expense of model clarity and flexibility.  If the variables have finite upper
bounds, the substitution must also be made in the upper bound constraints.
This will change them from simple bounds handled implicitly by the
software to new, denser constraints that add to the computational burden.
In such cases, the savings will be minimal.

When developing a linear programming model, the general rule is
that clarity and flexibility should take priority over economy.  Most
practical models are created to be solved not just once, but many times
with different parameter values and minor changes in the functional
relationships.  For instance, a production planning model may be solved
each month as new demand data become available.  The parameters
should be easy to modify and not hidden in the mathematical structure.
Moreover, variables and constraints should represent easily recognized
aspects of the problem so that managers unfamiliar with linear
programming can study and change the model.

The difficulty in solving a linear program depends on the number
of variables and constraints, with the constraints being much more
important than the number of variables.  Empirical testing has shown that
computation times are roughly proportional to the square of the number of
constraints.  Thus simple substitutions that do not compromise the clarity
of the model might well be acceptable. This is especially true for restricted
microcomputer codes with limited capacity.

Solution

The solution is given in the sensitivity reports presented below.  An
examination of the results tells a great deal about the validity of the model.
Very often an improperly stated model yields a completely illogical
solution such as all zeros for the structural variables.
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Assuming that the results are not unreasonable, reviewing the
solution identifies bottlenecks that hold down further improvement in the
objective.  In the case here, we observe that no raw material A is
purchased –– the required quantities are obtained as a by-product of
mixture 2 –– so ample quantities are still available.  On the other hand, the
entire supply of raw material B is used, implying that its limited
availability is a bottleneck.  The reduced cost for this variable indicates
that profit will increase by $23 for every extra unit of B that can obtained.
If any units of A are purchased, though, the profit will decrease by $3 per
unit, slightly less than the cost of raw material A.

In general, the reduced costs reflect both the benefits of increased
sales and the additional cost of the raw material. The information they
provide, though, is marginal indicating how much the objective function
would change with a unit change in one of the variables.  For raw material
B, the profit will increase linearly at a rate of $23 up to some limit on B,
but the analysis does not provide that limit.  To find its value we can use
trial and error and re-solve the model for different bounds, or we can
explicitly include the upper bound constraint (24) B ≤ 5000 in the model
to get the necessary information.  In particular, the constraint analysis
would tell us the range over which the RHS value of this constraint could
vary without inducing a change in the current values of the reduced costs.
Having done this, we learn that the upper limit is 10,000.  This means that
increasing the quantify of raw material B from 5000 to 10,000 would
increase the objective function by $23 × 5000 or $115,000; i.e., doubling
the available quantity of raw material B almost doubles the revenue.
Whether this is worthwhile or even feasible depends on the cost of
obtaining 5000 more units of B and the ability of the process can handle
the additional volume.  Recall that there is a limit of 10,000 lb. of input
material per month.

The maximum production of X is also a bottleneck for the solution.
The value of changing this limit is $4.07 per unit.  One might ask whether
the upper bound constraint (23) is really necessary or whether it is possible
to manufacture more of product X and dispose of any excess.

The constraint analysis indicates that  AM1% and ZLIM are loose
constraints, while BM1% is tight.  The shadow prices on the conservation
constraints (1) – (11) indicate the value of changing their RHS limits
(currently 0).  Since conservation of flow is a physical requirement, these
values may not have much meaning.

When asked for the solution of a mathematical program, students
will most often provide the value of the objective function at optimality.
This is perhaps the least informative component of the solution.  In most
situations, the objective function excludes many qualitative factors
important in the evaluation process but not quantifiable in terms of the
variables, thus making it a poor overall measure of system performance.
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The second response of a student is likely to be the values of the
decision variables.  Although much more difficult to provide because of
their number, decision variables hold important information about
operating levels and raw material usage.  It is essential to present these
values in a format useful to a decision maker.  A long list of numbers
generated by a computer program provides little insight.  Tables similar to
those below might be constructed to summarize the results in a form that
could be used by several operating departments.

Purchasing (amounts in pounds per month)

Raw
material Purchases

From
process Total used Unit cost

Cost of
purchases

A 0 1548 1548 $4.00 $0
B 5000 0 5000 3.00 15000
C 16071 0 16071 1.00 16071

Total $31071

Mix 1 Production Control (amounts in pounds per month)

Mix inputs Amount Mix outputs Amount
A 1548 X 5000
B 357 Y 1429
C 5238 Z 0

Total 7143 Waste 714
Total 7143

Mix 2 Production Control (amounts in pounds per month)

Mix inputs Amount Mix outputs Amount
A 0 X 0
B 4643 Y 4643
C 10833 Z 9286

Total 15476 RM A 1548
Total 15476

Sales (amounts in pounds per month)

Product Amount Unit
revenue

Revenue

X 5000 $5.00 $25,000
Y basic 500 11.00 5,500

Y special 5571 8.00 44,571
Z 9286 10.00 92,857

Total $167,929
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Management ($ per month)

Output measure Amount

Revenue $167,929

Raw material cost $31,071

Operating margin $136,857

The least frequent student response, and perhaps the most
important in practice, is a careful analysis of the system in terms of its
limits. What decision variables are zero?  Perhaps the system can be
simplified by not providing so many options.  What constraints are loose?
Increasing the efficiencies in parts of the system that are not limiting is
worthless.  What variable upper bounds and what constraints are tight?
This type of information illuminates perhaps the most fruitful areas for
analysis because efforts to improve a system should focus on its
bottlenecks not its operating levels.    

11. Solve the chemical processing example in Section 2.8 using a computer program.
Investigate the effect of the following changes separately.  The changes are not
cumulative.

a. Eliminate the upper bound on sales for product X.

b. Eliminate the upper bound on the manufacture of X, but assume any amount
produced over 5000 must be discarded at a cost of $1/lb.

c. Eliminate the restriction on the amount of raw material B that can be purchased.

d. Change the cost of raw material C to $5/lb.


