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Generalized Network Flow Programming

This chapter adapts the bounded variable prima ssimplex method to the generalized minimum
cost flow problem. Generalized networks are far more useful than pure networks because
the arc gain parameter allows significantly richer models. The implementation of the simplex
method for this problem is ssimilar to the smplex method for the pure problem; however, the
generalized agorithm is more complex in several ways. Animportant difference isthat the
solutions obtained no longer have the integrality property. We begin by describing the basis
and basic solutions of the generalized problem. For the pure problem the basis always
defines a subnetwork that isatree. For the generalized problem, the basis again describes a
subnetwork, but now the subnetwork may have several components. One component will
be atree rooted at the dack node, while each of the othersincludes asingle cycle.

C.1 Problem Statement

The optimization problem is to determine the minimum cost flow in a network with given
sets of arcs and nodes with the parameters of upper bound, cost and gain defined for each
arc and fixed external flow for each node.

The Example Problem

Asan example for this discussion we will use the network of Fig. 1 with the
number of nodes, m, equal to 5 and the number of arcs, n, equal to 5. Node
mis called the slack node and can supply or absorb any amount of flow.
Conservation of flow isrequired at the other nodes. Arcs representing slack
externa flows and artificial arcs originate or terminate at the dack node. In
the example, no arcs are incident to the slack node. The generalized model
differs from the pure network model because the gain parameters on the arcs
may have values other than 1.

The matrices defining the linear programming model for the example
are

Flow Variables: X =[ Xy, Xy, X3, X4, X5]T

Upper Bound: u=[3,4,321,1]T

Cost: c=[220,1,12,2]
Gain: g= [U3, 12, /2,14, 1/4]
a a ag ay ag
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[external flow]
(upper bound, cost, gain)

[0]

(1,12, 1/4)

Figure 1. Example of generalized network

Each column of the A matrix represents an arc and has at most two
nonzero entries. For the general arc k, the quantity +1 appears at the row
representing the origin node of the arc and —gy, appears at the row
representing the terminal node of the arc. Columnsfor arcs originating or
terminating at the slack node have only one nonzero entry (+1). Becausethe
constraint matrix does not have al unity coefficients, the matrix does not have
the property of total unimodularity, and basic solutions to the generalized
problem are not usually integer. Thisisillustrated in Fig. 2 by abasic fea-
sible solution for the example problem that happens also to be optimal.

[0]

[external flow]
(flow, gain)

(3, 1/3)
(4]

1, 1/2)

Figure 2. Optimal solution to the example problem

Conditions for Optimality

Our problem isto find a solution to the primal problem, x, and a solution
to the dual problem &t to satisfy the conditions for optimality. The
solutionsx and  are optimal if the following conditions are satisfied.
For simplicity define for the arcs:
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d.=m; — Oy + G for al k(i, J) eK.
The solutionsx and it are optimal if the following conditions are
satisfied.
1. Primal feaghility
a. X provides conservation of flow at all nodes except
the slack node.
b. 0 £ x, £ uy for all arcs.

2. Complementary Sackness
For each arc:
a if 0<x, <uy,thend, =0,
b. if x, =0thend, ® 0,
c. if x, = u,thend, £0.
When we specify the values of dual variables associated with each

node as
T = (T, Ty, T3, Ty, T5) = (24, 78, 88, 360, 0),

the solution in Fig. 2 satisfies these conditions. The solution is optimal.
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C.2 Basic Solutions

The generalized minimum cost network flow problem isa specia case of the linear
programming problem. We are assured, therefore, that there is at least one optimum basic

solution.

The Basis

Asfor the pure problem, we identify a basic solution by specifying the set
of basic arcs. An acceptable basis matrix has m — 1 independent columns
selected from A. Asfor the pure problem, any spanning tree rooted at the
dack node will result in abasis. For the generalized problem, some
additional structuresinvolving cyclesalso yield bases. For example
consider the subnetwork consisting of arcs 1, 2, 4, and 5 shown in Fig.
3. Because this network formsacycle, it would not be acceptable for the
pure problem, but it will be for the generalized problem.

Figure 3. Basis subnetwork with acycle

For the example of Fig. 3, with basis{1, 2, 4, 5} we have

Column & a3 3, ag
z 1 1 0 0 AN
& U
e o0 1 O U
@ 0 12 o0 1
€0 o -4 -l

The fact that the determinant of this matrix is not zero implies that the columns are
independent and that the selected arcs do form a basis.

It can be shown that the subnetwork defining a basis for the
generalized network problem will consist of atree rooted at the dack node
and any number of components, each containing asingle cycle. The
components containing cycles are called 1-trees because they each contain
onemore arc than atree. The total number of arcsin the collection of 1-
trees and the single tree rooted at the slack node will alwaysbe m — 1.

Fig. 4 shows several basis subnetworks for the example network. For
theillustration we have added an artificial arc (6) from the slack node to
node 1.
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Figure 4. Subnetworks defining bases for the example problem

We show the basis as a subnetwork consisting of both forward
and mirror arcsasin Fig. 3 and 4. For the tree containing the slack node,
the arcs are oriented so that the tree is a directed tree rooted at the slack
node. For subnetwork components containing a cycle, the cycle arcs are
oriented to form adirected cycle (there are always two acceptable
orientations). The arcs not on the cycle are oriented to form a directed
spanning tree with the cycle representing the root node. For many
purposesit is useful to consider amirror arc (-k) asan arc oriented in the
opposite direction to arc k with gain and cost respectively:

9+« = gk, Cx = —C/0k.
Thisis equivalent to making the transformation x_ix = —Xy gy inthe
original model. The transformed columnin A for arc -k is computed as
ak = —ak/gk. Inthefollowing discussion we make whatever trans-
formation necessary to represent the basis with directed trees and cycles,
realizing the original flows can be recovered by taking the inverse trans-
formation:

Xk = _X—k/gk
In terms of the transformed variables, the basis for the example of
Fig. 3isng =[-2, 1, -5, 4]. Asfor other linear programming problems
we use the np vector to describe the basis. The element ng; isthe
predecessor arc for node i in the basis subnetwork. Now the basis matrix
becomes
Arc: a, @& ag a Node
—2 0 Ol) 1
0 -13 0 14
1 0o 4 Og 3
0 1 14 4

(o8
I
D:D> XD~




Generalized Network Flow Programming

It isuseful to determine descendant lists of the nodes and arcsin
the basis subnetwork. Thisis complicated by the fact that al the nodes
on acycle arein fact both successors and predecessors of each other. We
arbitrarily select some node on the cycle, identify it as the root node, and
for the purpose of creating the list, neglect the predecessor arc to that
node. The remaining nodes are ordered so that a node will appear before
all its descendants. Choosing node 2 as the root for the example, the
descendant nodellistis{2, 4, 3, 1}. The descendant arc list is created by
listing the predecessor arcs for each node in the order in which they
appear in the descendant node list. For the example, the descendant arc
listis{1, 4, -5, -2}.

It isinteresting to arrange the rows and columns of the basis
matrix according to the descendant node and arc lists. Then we have.

Arc: a, @a aypy a, Node

gU3 10 0 ;2
é 0 -1/4 1 0O g 4
B=a 0 0 4 1 g3
e 1 0 0 -2 Uu 1l

Thismatrix has al the arc gains on the diagonal, and all the entries below
the diagonal are zero except one. Thisformistypical whenthe basisisa
1-tree.

To present the results in somewhat greater generality we consider
the two types of basis components, shown in Fig. 5, that might be
present in ageneralized problem. Fig. 5a shows a component rooted at
the slack node, and Fig. 5b shows a component rooted at acycle. For
simplicity we have indexed the nodes and arcs so that arci isthe
predecessor arc of nodei.

L 6 C/“

Figure5. a A basiswith atreerooted at the slack node
b. A basiswith acomponent rooted at a 1-tree

We show the basis matrices for the two cases with the subscripts
a and b providing identification.
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Arc: a; a, a3 a, Node
7 —gl 1 1 O S 1
Q 0 —02 0 1 U 2
Ba= € o 0 -gg o0 U3
e o 0 0 -g4 U4
Arc: ay a, &g a, Node
V4 —gl 1 1 \ 1
8 o 9 1 0 H 2
Bb=a 1 0 g 0 33
8 0 0 0 -g, H 4

The basis of type ais an upper diagona matrix, with the gain
factors appearing on the diagonal and all entries below the diagona equal
to zero. The determinant of this matrix is easily seen to be the product of
the arc gains.

|Ba| =019-,039,

In general for abasis component describing atree rooted at the dack
node, the determinant of the basis matrix is equa in magnitude to the
product of the gains of the basic arcs. Let B be the set of arcsin the basis
component.

IB|= io O
ki B
Aslong as the gains are nonzero the determinant cannot be zero, so any
tree defines anonsingular basis.

To evauate the determinant of B p, we note that the matrix has
two parts, the cycle part consisting of the intersection of rows and

columns 1, 2, and 3, and the tree part consisting in this case of row and
column 4. Expanding the determinant about row 4, we have
-0, 1 0 1 1
0 -0, 1 o T :
Bpl=y 1 0 g3 O 1 =4y 0 % .
0 0 0 —0, '
Now expanding the determinant about the first column, we find that
Byl =—04(-919,03 + 1).

Weidentify the factor g,9,05 as the product of the gains on the cycle arcs

and give it the genera designation 3, called the cycle gain. Thusthe
determinant is
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Basis I nverse

Bl =94(B - 1).

In genera for a 1-tree, the determinant of the basisisequal in
magnitude to the product of the gains for the arcs not on the cycle multi-
plied by thecyclegainless1. Let T bethe set of arcs not on the cycle.
Then the determinant is

Bl=t (8-1)Og,

kI T

wherethecyclegainis

This determinant is nonzero if none of the arc gains are zero and
the cycle gain does not equal 1. The latter condition is arequirement for
nonsingular basis matrices. The cycle gain plays an important rolein the
simplex agorithm for generalized networks.

Asfor the pure problem, we do not use the basis inverse explicitly in the
computational methods, rather, we compute the information we need
about the basis inverse whenever it isrequired. To gain some un-
derstanding of the procedures, however, and to provide alink to general
linear programming, we describe in this section a method for constructing
the basisinverse matrix.

The basisinverseis a square matrix with a column for each node

and arow for each basic variable. Let pyj represent the entry in the basis
inversefor basic arc k and nodei. Notethat i will range from 1 to m-1,
however, k will take on the designations of arcsin the basis network.

Theindex k will be negative for mirror arcs. It can be shown that py; is
the negative of the flow required in arc k if one unit of flow iswithdrawn
at nodei. In the following we determine thisflow in order to determine

the value of py.

Let the path terminating at arc i in the basis tree be a subnetwork
withtarcs, Kp={ky, ky, Kg,..., ki}, and t+ 1 nodes, I, = {iy, iy, iy,
...,Iyy. Thenode set and arc set are ordered so that the indices show the
sequence of arcsin the path. Thefinal nodeisity =i. The path may
originate at the slack node asin Fig. 6, inwhich iy =m, or originate with
acycleasinFig. 7. When the path originates with a cycle, some node |

islisted twice in the node list. We will call thisthe junction node and note
thatip =j.
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0
0
Figure 6. Tree component of basis network

The effect on the flow of basic arc k of drawing one unit of flow
out of nodei depends on whether the arcison acycle. First consider the
case when arc k isnot on acycle. Withdrawing one unit of flow from
nodei only affects the flows on basic arcs that are on the path to nodei,

so assume k ison the path. Let yy; be the product of the arc gains from
the origin node of arc k to nodei (notethat yy; includes the factor gi).

The amount of flow required on arc k issimply 1/ . Thentheentry in
the basis inverse for the row associated with arc k and the column for
nodei is;

0 If arc kisnot on the directed path to node i
pi = | My if arc k ison the directed path to node i (1)
T but not on a cycle.

Figure 7. 1-Tree component of basis network

To determine the flow required on basic arc k when it ison the
cycleof al-treeasin Fig.7, consider first the effect of the cycleina
generalized network. Say node j isanode on the cycle that originates arc
g, where arc q is on the directed path to nodei but not on the cycle. Let
arc p bethe cycle arc terminating at nodej and let r be the cycle arc

originating at nodej. xp and X, are related by the cycle gain: gpxp = BX;.
Conservation of flow at node j requires that the flow entering node j on
arcp must equa the flow leaving nodej on arcsg andr.
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ngp:Xq+ Xy Or
03%<0
w= gB 15 9,0

Note that the flow on adjacent arcs p and g are again related by the
arc gain of p, but the fact that arc p is on the cycle requires that the flow

Xqbe multiplied by the adjustment factor B/(3 —1). To simplify the
following expressionslet n = B/(B —1). Theterminthe basisinverse
corresponding to basic arc k and nodei is:

N if arc k isnot on the directed path to node i
l —1fy; if arc k ison the directed path to node i
=| but not on a cycle )
T -nly,; if arc k ison the directed path to node i

but on a cycle.

Equation (2) isgeneral inthat it al'so coversthe tree case of EQ.
(1), sowewill use Eq. (2) in the following.

To illustrate the application of this expression, consider again Fig.
5. InFig. 5athe basis has a tree with no cycles. Repeating the figure
with the arc gains shown, one can easily apply Eg. 2 to obtain the basis
inverse below. Asthe basisisan upper diagona matrix, so isthe basis
inverse.

Node: 1 2 3 4 Arc

, Vg1 Voigz  Vgi9s  10i0,04 ~ 1

. 8 0 1/g, 0 1/9,9,4 H 2
a “"A 0 0 1/g, 0 73

8 0 0 0 1/9, H 4
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Applying Eq. 2 to the 1-tree of Fig. 5b (repeated below) we obtain the
basisinversefor this case.

Here = 910,05, and n = B3 —1). Thebasisinverse
determined according therules of Eq. (2) is:

Node: 1 2 3 4 Arc
é n/gy n/g.9, 1N/9;9,95 N/919, N1

7

en/919293 n/g, n/gzg3 n/91929394 u 2

Bb_l =— A V4
€ nogs moggs  Wgy  nog, U3
€ o 0 0 vg, U?

In Fig. 8, we show again the basis 1-tree for the example of Fig.
3. Thearc gains associated with the basic arcs are shown on the figure to
help with the computation of the basis inverse.

(gain

Figure 8. Example basiswith gains

To compute the basisinverse for the exampleit isbest to list the arcsand
nodes in descendant order and then construct a table for computing the

product of arc gains, v, asillustrated below. The elements of the table
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are computed one column at atime. The column for nodei is constructed
by tracing the path entering node i backwards using the predecessor arc

defined for each node. They,; quantities can then be easily computed in a
cumulative fashion. When the path to a node includes a cycle, the cycle
gain, 3, and corresponding multiplier, n, are shown at the bottom of the
column. In the following table we use the values of y,; and Eq. (2) to
compute the basisinverse.

Computation of v,
Nodes
Arc Arcgan 2 4 3 1
1 1/3 1/3 112 1/3 2/3
4 14 2/3 14 1 2
_5 4 8/3 2/3 4 8
5 2 2/3 16 2/3 2
p 2/3 2/3 2/3 2/3
n —2 —2 —2 —2
Computation of the basisinverse
Nodes
Arcs 2 4 3 1
1 6 24 6
4 3 8 2 1
-5 3/4 3 12 14
—2 3 12 3 1

Although we have shown how to compute the basis inverse for
the generalized network problem, computer programs implementing the
simplex algorithm will not actually maintain thisinverse for computational
processes, rather, each column will be computed when needed directly
from the tree representation.

Nonbasic Variables

The arcs not selected as basic arcs are the nonbasic arcs. In abasic
solution, each nonbasic arc, k, will have itsflow at zero, the lower
bound, or uk, the upper bound. L et the set n, be the set of nonbasic arcs

with zero flow, and let n, be the set of arcs with upper bound flow. To
represent a specific case graphically we will show the membersof n, as
dotted lines.
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Primal Basic Solution

Given a selection of basic arcs and an assignment of nonbasic arcsto
either ny or n4, there is a unique assignment of flows to the basic arcs.

Letxg bethe vector of flows on the basic arcs.

To solve for the basic arc flows, we must first adjust the external
flows for the flows in the nonbasic arcs at their upper bounds. Eq. 3
defines an adjusted external flow for nodei, b, that isthe original
external flow reduced by the flow of the upper bound arcs leaving the
node and increased by the flow on the upper bound arcs entering the
node.

bi' =b — é u + é Y ©)
it (K O(i)Cnl) it (KT(i)Cnl)
Letp; becolumni of the basisinverse. Then the basic solutionis

m-1

xg=a pibi (4)
i=1
For the basis given for the example problem the basic variables
are
Node 1 4
, Xl ~ 3 N ~ 24 < 7 3 N
u
Sx o 810 §8d_§& 1 4
xg=C x5 U=4s 14 o + (38 3 3= 0125 g
€xo, U €1 40 €120 e 05

Transforming the mirror arc flowsto obtain the origina flows
using the equation x,, =—x_, /g, , we obtain the basic flows shown in

Fig. 9.
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[external flow]
(flow, upper bound, gain)

Computing the

1, 4, 1/2) (0.5, 1, 1/4)

[0]
Figure 9. Primal network for example basis

For this computation, it is only necessary to compute the columns of the
basisinverse that are associated with nonzero node external flows.

Dual Variables

The dual variables are identified with the nodes of the network. Thuswe
cdl mj , the dua variable, or alternatively the node cost, for nodei. The

complementary dlackness condition of linear programming requires that
the dual constraints associated with the basic variables of the primal must
betight. Thusfor each basic arc, k(i, j), the following constraint must be
satisfied.
T % =%
For that part of the basis comprised of the tree rooted at the slack

node, the dual variables are easily determined by first assigning the slack
node the value zero.

Tm =0

Then for each basic arc in the tree, k(i, j), where i = ok andj = ty, assign
dual values so that

When the dual variables are assigned in order of the descendant vector of
the dlack node, this expression is used sequentially to assign dual
variablesto all the nodesin the subtree of the slack node. For the
example case of Fig. 5a.

4= {s 1, 2,3, 4}.
Following the order prescribed by this vector
=0
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Ty = (ng+ Cp)/gy

Ty = (g + C))/0,

3= (my + C3)/g3

Tty = (Tt + Cy)l0y

For components rooted at acycle, the processis alittle more

complicated. For the example of Fig. 5b, the following conditions must
hold relating the nodes on the cycle.

T, = (ng + Cp)/gy

Ty = (g + C))/0,

ng = (1 + C3)/g3
Solving for 1 we discover that

71 = (G, + g,C3 + 9,05¢))/(B - 1)

Once one of the dual variables on the cycle is determined, al
others can be determined using Eq (4). In general, for any node on a
cyclethedua variableis

cost of routing one unit around the cycle starting at node i
TC. =

| B_l

[node cost]
(arc cost, gain) [78]

[0]

Figure 10. Dua network for the example
For the example shown in Fig. 10, all nodes are on asingle cycle.
Mirror arc costs are calculated from original arcs as. c.x = —Ck/gk. We

have 3 as2/3. First determining 11, we compute the cost of routing one
unit of flow around the cycle starting at node 1.

Cy+09Cs *+9194C 5+ 91949 5C 5
2+ (1/3)(12) + (1/3)(1/4)(-8) + (1/3)(1/4)(4)(-40)
=8
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Dividing this number by B —1 we obtain
n, = 24.
The other dual variables are computed with Eqg. (5).
T, = (24 + 2)/(1U/3) =78,
n, = (78 + 12)/(1/4) = 360,
m3 = (360 -8)/4 = 88.
The vector of dua variablesisthen
T = (Tq, Ty, T, Ty, Tg) = (24, 78, 88, 360, 0),

Arc Marginal Cost and Conditions for Optimality

For the generalized network, the marginal cost for the general nonbasic
arck(, ) is
de= C + 7 — Ok . ©)

If the solution is optimal, for each nonbasic arc k(i, j) one of the
following conditions must hold:

If X, =0, then dy 2 O. (6a)

If Xk = Uk, then dk £0. (Gb)

When some nonbasic arcs do not satisfy the condition, the
solution is not optimal, and an arc, which violates the optimality
condition, must be selected to enter the basis. For the bounded variable
simplex method a variable can enter the basis by going up from zero or by
going down from its upper bound. Actually any nonbasic variable
violating an optimality condition may be selected, however, for smplicity
we choose the variable which violates the optimality condition the most.
Thus we will choose the entering variable k* according to therule

{max{-d, :d, < 0and k T ng}
di* = max i - @)
fmax{d, :d, > 0 and k | n;}

For the example problem the only nonbasic arcisarc 3(2, 3). The
marginal cost for thisarcis

d3 =m,+C3—03n3
=78+ 1—(0.5)(88)
= 35.

Since the marginal cost is positive, and the flow in arc 3 is zero, thisarc
satisfies the optimality condition. Sincethisisthe only nonbasic arc, the
solution given must be optimal.
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C.3 Primal Simplex

There are anumber of aspects of the primal simplex algorithm that are the same for the pure
and generalized problem. After areview of the similarities, we consider the primary
difference, determining the arc to leave the basis. We then present an example of a
complete generalized network solution.

The Primal Simplex Algorithm

The overal agorithm implementing the primal simplex remains the same as
for the pure problem. The agorithm begins with a basic feasible solution.
After theinitial primal and dual solutions and theinitia basis subnetworks
are constructed, the algorithm proceeds iteratively asfollows:

» Check the solution for optimality.
* If not optimum, select an arc to enter the basis.
» Determine the arc that must leave the basis.

» Change the basis subnetwork by deleting the leaving arc and adding
the entering arc.

» Compute the new primal and dual solutions.

The Initial Solution

Asfor the pure problem, one can form an initial basic solution by adding an
artificial arc for each node. If some nodei has negative or zero external
flow, the artificia arc is directed from the slack node to nodei. If node i
has positive external flow, the artificial arc is directed from nodei to the
dack node. The gains of the artificial arcs are set to one. Initialy the
artificial arcs carry the external flows. Theinitial basis subnetwork consists
only of the artificial arcs, so theinitia basisformsatree. The simplex
algorithm isimplemented in two phases, with the first driving out the
artificia arcs and the second obtaining the optimal solution.

The Entering Arc

The process of selecting the entering arc uses the marginal cost associated
with each nonbasic arc. The marginal cost for arck(i, j) is asfollows.

A = 7 + G = Gy
Although, the computation of the marginal cost is dightly different than for
the pure problem since it involves the gain factor, the conditions for
optimality remain the same as for the pure problem. Any arc that does not
satisfy the conditions may enter the basis. The strategies for the selecting

the entering arc remain an optiona part of the algorithm and can follow the
approaches for the pure problem or for more genera linear programs.
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The Leaving Arc
Sructure

Given an arc to enter the basis, some basic arc must leave. For the pure
problem, the entering arc always forms a cycle when inserted in the basis
subnetwork. Because aflow change on the entering arc only affects basic
arcson the cycle, the leaving arc must be one of these arcs.

For the generalized problem, the basis subnetwork consists of atree
rooted at the slack node and perhaps other componentsin the form of 1-
trees. Because of the nonunity arc gains, aflow change in the entering arc
will cause unequal flow changes on basic arcs, and the leaving arc may be
inavariety of locations. Fig. 11 illustrates the possible situations that can
arise.

(b)

Reverse
Cycle

@i

R

Figure 11. Possible basis configurations with the entering arc
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In the figure we assume that flow isincreasing in the entering
arc. Thiscausesflow to increase in the forward paths, labeled F, and
decreasein the reverse paths, labeled R. The pathslabeled C are
common to the forward and reverse paths. The direction and amounts
of flow change in C depend on the relative gains of the forward and
reverse paths.

Fig. 11aillustrates the only case possible for the pure problem.
Here the entering arc connects two nodes on the tree forming the cycle
indicated by F and R. Theleaving arc must be in one of these two
paths. For the generalized network when the gains of the paths are not
the same, flow will also change in path C, and the leaving arc may bein
this segment. If the leaving arc does happen to be in path C, the new
basis subnetwork will have anew 1-tree with the cycleformed by F, R,
and kg.

In Fig. 11b, ¢, and d, the entering arc connects two components
of the basis subnetwork. In case b, increasing flow in the entering arc
draws additional flow from the slack node, and flow is decreased in the
reverse path. The flow change must be absorbed in the cycle. Inthe
other cases flow is either absorbed or generated by the cycles,
represented as a decrease or increase of flow on the cyclearcs. Flow
generation or absorption in cyclesis possible only because the cycle
gainisnot unity. Theleaving arc may be in any path shown on these
figures. After the basis change, the basis subnetwork may take a variety
of forms. When acycle arc leaves, a 1-tree is destroyed and two
components become one.

In Fig. 11e and f, the forward and reverse paths are in the same
component rooted at acycle. When the leaving arc is on the cycle, the
entering arc will form anew cycle and the component will remain asa 1-
tree.

Computing the Marginal Flow Change

After an arc has been selected to enter the basis, we move to an adjacent
feasible basic solution by increasing or decreasing the flow in the
entering arc. While changing the flow on the entering arc, the flowsin
some of the basic arcs must also change in order to maintain
conservation of flow at the nodes. The flow changesin the entering arc
by an amount that will just drive the flow on one of the basic arcsto
zero or to its upper bound, or drive the flow on the entering arc to zero
or to its upper bound.

Although algorithms that implement this step construct the list of
arcs and their marginal flow changes from the basis tree itself, we resort
to using the columns of the basis inverse as discussed in the last section.

Letpj becolumni of the basisinverse. An element pp isthe marginal
decreasein the flow in basic arc h per unit increase in the flow
withdrawn from nodei. Asdiscussed in the last section, the
components of the inverse are computed directly from the basis
subnetwork whenever required.

Say we haveidentified an arc k(i, j) with gain g, to enter the
basis by increasing its flow from zero by an amount Ds. This causes an
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increase in the flow withdrawn from node i of Dy, and a decrease in the

flow withdrawn from nodej of g, D;. Assume that the current basic
flows are described by the vector x;. The new flows caused by a

change of Ds will be
Xg = XgDx (i —gkP;)

We identify the terms in the parenthesis as the marginal change vector
yk- When the flow in the entering arc k isto increase from zero, the
marginal change vector is given by Eq. (8).

If X, isincreasing: y, = p; —dkpj- 8

Note that this corresponds to asimilar definition of yi from generd linear

programming theory. Ingenerd,y, = B‘lak. Since the for the generalized

network problem, the vector ax for arck(i, j) hasa+1 coefficient for nodei, and a
—g, coefficient in row j, the result for a network problem is as noted in Eq. (8).

The arc entering the basis may be decreasing from its upper

bound. Inthiscase we will still take the flow change, Dy, as a positive
quantity, but we will define the margina change to be the negative of
Eq. (8).

If X, isdecreasing: y, =—p; + Ok 9

Identifying the arc to leave the basis

In order to determine the arc to leave the basis, we must write explicitly
the basic flows as a function of the flow change. We have chosen to
always show flow in the forward arc direction, regardless of the
orientation of the arc in the basis subnetwork. A basic arc, h, may
appear asaforward arc (h > 0) or asamirror arc (h < 0), but we will
aways refer to the flow in the arc in the forward direction x||.

The vector yk has component, yhk, that indicates the marginal
changeinarc hasarck entersthe basis. Let x|y be the current flow in

arc |h|. With the flow change, the new flow in the arc depends on
whether it appears as aforward or mirror arc in the basis.

iﬂm— Dyhk if h>0 }J
X =1 , Y (10)
lehl + nghyhk if h<O b
For feasibility the new flow must between zero and the upper bound:
O£ Xjn| £ Upn|

Considering the signs of the various factors this leads to the following
conditions that must be satisfied by the flow change.
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Forward Arc (h > 0) Yhk >0 Yhk <O
Dt £ Xn/yhk Dt £ —(Un — Xn)/ynk
Mirror Arc (h< Q) Onyhk >0 OhYhk <0

Dt £ (Ujh| — X|h| )/9hYhk

Dt £ —(X|n| )/ghyhk

Thus we have a quite complicated ratio test that depends on the
orientation of the arcsin the basis and the signs of the marginal change

and gain factors.

'I' min{— (U, — X))k : Yk < 0 and h > 0} | 2
D = Min | MI{ U = Xn YOVhk © GnYre > 0 @nd h< 0} vy 3

I min{— (X Y9 Ynk - 9y < 0 and h < 0} T 4
| Uy b 5

(11)

The arc leaving the basisis the arc h for which the minimum is obtained.
In cases 1 and 4, arc h leaves the basis by going to zero. In cases2 and
3 the arc leaves the basis by going to its upper bound. Case 5 indicates
that no arc leaves the basis as the flow goes to its opposite bound.

[lustration

Although we have an optimal solution for the example, we will allow
arc 3to enter the basisto illustrate this procedure. The basisinverse
obtained for the examplein the last section is shown again below. The
columns are identified by node number and the rows are identified with

the basic arcs.
Basisinverse
Nodes
Arcs 2 4 3 1
1 24 6
4 3 8 2 1
-5 3/4 3 12 14
—2 3 12 3 1

Since arc 3(2,3) isto enter the basis, the marginal change vector is

computed from Eq. (1) as
Y3=pP2—03P3
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T3 ? 22 822
V3= ¢ 34—~ (W)L 12 2= ¢ 12 -
8 3 @ 3 @ g 32 o
The table below helpsto perform theratio test. The case column
refersto the line of EQ. (11) used to compute the ratio.
Bascarc(h) [ gain(gy) Yhk Case X|h| Ratio
1 13 3 1 3 1
4 1/4 2 1 1 1/2
-5 4 1/2 3 12 14
-4 2 3/2 3 1 1

1
@ @ 714, 1/2) v
2

The minimum ratio is 1/4, obtained for arc —5. Because 1/4 < 3/2, the

upper bound for arc 3, arc 5 will leave the basis Df = 1/4. Computing the
new flows, we have

for forward arcs: x;, = Xn' — Dryp
X, = 3—3(1/4) = 94
X, =1-2(1/4) = 1/2

for mirror arcs: X, = X-h' + Dy O
Xg =12+ (U2)(4(14) =1
Xy = 1+ (312)(2)(U4) = /4

for theentering arc: xx = Df, x3= 1/4.

These flows are shown in Fig. 12.

(9/4, 1/3

[4]

w

(1/4, 1/2)

(1,1/4) -
v 7~ 5/

[0]

Figure 12. Arcflowsfor the basiswhen arc 3isadded and arc 5 is removed
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Changing the Basis Subnetwork

Although Fig. 11 illustrates the complexity that can arise concerning the
entering and leaving arc, the actual process of forming the new basis
subnetwork is the same for the generalized network as for the pure network.
Given the identity of the entering and leaving arc, the basis subnetwork is
changed by:

» Deletetheleaving arc.
* Add the entering arc.

* Reversethe orientation of all arcs between the termina node of the
entering arc and the terminal node of the entering arc.

The last step of this procedure assures that each component of the basis
subnetwork is either adirected tree rooted at the slack node, or adirected 1-
tree rooted at acycle. Fig.13 showsthe new basis when arc 3 enters and
arc -5 leaves. We will see anumber of other examples of thisin the
problem that appears at the end of this section.

[51/2]
(12, 1/4)

[13/2] [150]

Figure 13. New basis subnetwork formed by adding arc 3 and removing arc 5

Compute the New Primal and Dual Solution

The new primal solution is obtained using the marginal equations used
earlier in the development of theratio test.
For the basis arcs

X = | - (12)
T X|h| + nghyhk if h<O
For the entering arc

If X, isincreasing from zero: X = Dy.
If X, is decreasing from its bound: X, = u, — Dy.

The new dual solution need be computed for only the portion of
the basis tree that has changed. Let k(i, j) be entering the basis. Define
anoder asthe root node. If k appearsin the tree in the forward
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direction, the component of the tree that is rooted at node j will have
revised dual values. Inthiscaselet r =j. If k appearsin the mirror
direction in the new subnetwork (—k isin the subnetwork), the
component of the tree rooted at node i will have changed dual values, so
letr=1i.

List the successor nodesto node r in successor order, and use
the defining equations to compute the new dual valuesfor the tree rooted
ar.

Complete Algorithm

Toillustrate the smplex agorithm applied to the generalized network,
we show the sequence of basic subnetworks obtained for the example
network given in Fig. 14 starting from a completely artificia basis.

[external flow]
(upper bound, cost, gain)

[0]

(1,1,1)

Figure 14. Example network with artificia arcs
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Dual Network Primal Network
[Node Cost] [Fixed External Flow]
(Arc Cost, Arc Gain) (Arc Flow, Arc Gain)

Initial Artificial Basis

(1]

[-3/8]

(1,1)
9

Arc 2 entersthe basis and arc 8 leaves
1]

0O

[1]
(1 1)
(o 1/2)
[2
(1, 1)

[-3/8]

Arc 5 entersthe bass and arc 5 leaves

(1]
(1, 1)

[1] [-3/8]

(2,112) (1, 14) .-
2 -~

o ol
(1,1) (1/8, 1)
9 9
Arc 1 entersthe basisand arc 7 leaves
[-3] [0]
©.1/3 (0, 1/3
1] 1 [4] L [-3/8]

(1,1) (2, 1)@
@ - (0, 1/2) 6 (2,112) @, 1/4) -V

\ ] ///, .

(1/8, 1)
9 9
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Arc 4 entersthebasisand arc 9 leaves
[-3] [0]

0, 113 0. 1) (3/2, 1/3 (112, 1/4)
2 1 4 [12] o) [4] 1 4 [-3/8]
b 4

" [-1] W
@gﬁi)@ 0, 1/2) @46_@ @, 1/2)
2

@, 1/4) >
\[_2] r(rfs 2 [0] ),‘(5

Arc 3 entersthe basisand arc 1 leaves

® ®
® O GO O ®
® ©,

End phase 1 and begin phase 2

® ®
® O GO O ®
® ©,

Arc -4 entersthe basis and arc 3 leaves

® ®
® O GO O ®
® ©,
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C.4 Exercises

1. Forthe example of Fig. 1, show the basis and basis inverse for each of the basis
subnetworks shown in Fig. 4.

2. Thetree shown below represents a basic solution to some network problem. Arc (13,9)
is chosen to enter the basis. List the set of arcs from which the leaving arc must be

chosen for each of the problem classes listed.
a. Generaized minimum cost flow:
b. Pure minimum cost flow:

/v@
—*()—>(5)
©\® i
o g -

1
9
1 9
1

3. Consider the network below with the added information that all arc gainsare 2. For
each basis show the basis tree, primal variables, and dual variables. All nonbasic
variables have O flow. Select the arc to enter the basis for the next iteration.

a ng={124,,8,10, 12, 14}
b. ng={1,2,4,6, 11, 12, 13, 14}

[Fixed flow, slack flow, slack cos
(upper bound, cost)

[-8]
(10, 4 (11, 23) (12, 4
7 4 )= )(g 6> 12 8
19 (13 I16
N N N
~|7 (11 ™| 15
To) © ~
(11, 8 (11, 11
S ) o )z 9

(8]
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() - ..
O Oning O

all arcs have

gain =2
[10.75] [9.375] [10.188]
(1) (2) (4)
O On 220
[r]
) [6] 0) [5] [4.33] ) [4.17]
0 4
o 4 ( ) S 6:> 12 3 ‘
[0] ) =+ [L3
(0) c ! =
gain=1 -'?.f_, —l
> [3.9] [10.75] =
0) > (:) (4)
6 ! 14
[2.67] [6.83]

4. TheLP formulation of a network problem includes the set of linear conservation of
flow equations. Ax = b, where A istheincidence matrix defined by the arcs of the
network, b isavector of externa flowsand x isthe flow vector. When abasisis
defined and all nonbasic flows are zero, the set of equations: Bxg = b is appropriate

to determine the basic flows x .

The network below shows part of the basis for a generalized network problem. The
arc gains and external flows are as shown. Write the set of equationsBxg = b and

solve them for the basic flows.

[Fixed Flow]
(Gain)

(0. 5)

(05) ( )
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The figure provides some information about a general arc k that originates at node i

and terminates at node j. Each part of the problem gives some additional information.
Given the conditions stated in each part, say as much as you can about the unknowns
X, and ;. The parts are independent and the conditions given in one part do not hold

in the other parts.

o o T ®

[t = 28] [t =7]
(x=?,u=12¢c=-4,g=0.8)
O 10,
Arck isbasic.

Arck isnonbasic withx, = 12. The solution is optimal.
Arck isnonbasic, the solution is optimal and m; = 27.

Arck is chosen to enter the basiswith m; = 23.

The figure below shows a generalized network. Node 6 isthe lack node. All flows
are zero. Let the basisconsist of arcs 3, 6, 8, 9, and 10.

a
b.

Compute the node potentials ().

Compute the flows on the basic arcs for an external flow of 1 at node 5. All
nonbasic flows are zero.

List the tree arcs and tree nodes in predecessor order. Also show the depth of each
node.

Let arc 4 enter the basis and arc 3 leave. Sketch the new basis network, and list
the nodes and arcs in predecessor order.

(Capacity, Cost, Gain)

(12, 3, 2)
1

(12, 1, 0.75)
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7. Thefigure shows a generalized
minimum cost flow problem.
Using the basis shown by the
heavier lines, compute the flows
on the basic arcs and the node
costs. Assume all nonbasic arcs
have zero flow. Check the
solution for optimality. Ifitis
not optimal identify an arc to
enter the basis. Select the arc to
leave the basis, and construct the
new basistree. Node 1 isthe
slack node.

8. Thefigure shows ageneralized
network with infinite capacity on
al arcs. The heavy lines show
theinitial basis. The arc to enter
the basis using the "most
negative' rule. Changethe
basis. Show the new basisand
new node costs. Node 1isthe
slack node.

(Capacity, Cost, Gain)
[External Flow]

(Cost, Gain)
[External Flow]

(3,0.5)
3

0
2
9
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9. Thefigure shows ageneralized
network with flows capacities
and gains. The heavier lines
identify the current basis. Let arc
3 enter thebasis. Find thearcto
leave the basis. Find the flows
associated with the new basic
solution. Draw the new basis
network. Node 1 isthe sack
node.

(Flow, Capacity, Gain)
[External Flow]

(0,3,0.5




