
Appendix C Page 1

6/1/02

Generalized Network Flow Programming

This chapter adapts the bounded variable primal simplex method to the generalized minimum
cost flow problem. Generalized networks are far more useful than pure networks because
the arc gain parameter allows significantly richer models. The implementation of the simplex
method for this problem is similar to the simplex method for the pure problem; however, the
generalized algorithm is more complex in several ways. An important difference is that the
solutions obtained no longer have the integrality property. We begin by describing the basis
and basic solutions of the generalized problem. For the pure problem the basis always
defines a subnetwork that is a tree. For the generalized problem, the basis again describes a
subnetwork, but now the subnetwork may have several components. One component will
be a tree rooted at the slack node, while each of the others includes a single cycle.

C.1 Problem Statement
The optimization problem is to determine the minimum cost flow in a network with given
sets of arcs and nodes with the parameters of upper bound, cost and gain defined for each
arc and fixed external flow for each node.

The Example Problem

As an example for this discussion we will use the network of Fig. 1 with the
number of nodes, m, equal to 5 and the number of arcs, n, equal to 5. Node
m is called the slack node and can supply or absorb any amount of flow.
Conservation of flow is required at the other nodes. Arcs representing slack
external flows and artificial arcs originate or terminate at the slack node. In
the example, no arcs are incident to the slack node. The generalized model
differs from the pure network model because the gain parameters on the arcs
may have values other than 1.

The matrices defining the linear programming model for the example
are

Flow Variables: x = [x1, x2, x3, x4, x5]T

Upper Bound: u = [3, 4, 3/2, 1, 1]T

Cost: c = [2, 20 , 1, 12, 2]

Gain: g = [1/3, 1/2, /2, 1/4, 1/4]

a1 a2 a3 a4 a5

A =








1 1 0 0 0

–1/3 0 1 1 0
0 –1/2 –1/2 0 1
0 0 0 –1/4 –1/4

 , b =








4

0
0

–3/8

2 Generalized Network Flow Programming

(3, 2, 1/3)

1

2

3

4

(1, 12, 1/4)

(4, 20, 1/2) (1, 2, 1/4)

(3/2, 1, 1/2)

[4]

[0]

[–3/8]

[0]

[external flow]
(upper bound, cost, gain)

1 4

3

2 5

5

Figure 1. Example of generalized network

Each column of the A matrix represents an arc and has at most two
nonzero entries. For the general arc k, the quantity +1 appears at the row
representing the origin node of the arc and –gk appears at the row
representing the terminal node of the arc. Columns for arcs originating or
terminating at the slack node have only one nonzero entry (±1). Because the
constraint matrix does not have all unity coefficients, the matrix does not have
the property of total unimodularity, and basic solutions to the generalized
problem are not usually integer. This is illustrated in Fig. 2 by a basic fea-
sible solution for the example problem that happens also to be optimal.

1

2

3

4

(3, 1/3) (1, 1/4)

(1, 1/2) (1/2, 1/4)

(0, 1/2)

[4]

[0]

[–3/8]

[0]

5

1

2

3

4

5

[external flow]
(flow, gain)

Figure 2. Optimal solution to the example problem

Conditions for Optimality

Our problem is to find a solution to the primal problem, x , and a solution
to the dual problem to satisfy the conditions for optimality. The
solutions x and are optimal if the following conditions are satisfied.
For simplicity define for the arcs:

Problem Statement 3

dk = i – gk j + ck for all k(i, j) ε .

The solutions x and are optimal if the following conditions are
satisfied.

1. Primal feasibility

a. x provides conservation of flow at all nodes except

the slack node.

b. 0 ≤ xk ≤ uk for all arcs.

2. Complementary Slackness

For each arc:

a. if 0 < xk < uk, then dk = 0,

b. if xk = 0 then dk ≥ 0,

c. if xk = uk then dk ≤ 0.

When we specify the values of dual variables associated with each
node as

 = (1, 2, 3, 4, 5) = (24, 78, 88, 360, 0),

the solution in Fig. 2 satisfies these conditions. The solution is optimal.

4 Generalized Network Flow Programming

C.2 Basic Solutions
The generalized minimum cost network flow problem is a special case of the linear
programming problem. We are assured, therefore, that there is at least one optimum basic
solution.

The Basis

As for the pure problem, we identify a basic solution by specifying the set
of basic arcs. An acceptable basis matrix has m – 1 independent columns
selected from A. As for the pure problem, any spanning tree rooted at the
slack node will result in a basis. For the generalized problem, some
additional structures involving cycles also yield bases. For example
consider the subnetwork consisting of arcs 1, 2, 4, and 5 shown in Fig.
3. Because this network forms a cycle, it would not be acceptable for the
pure problem, but it will be for the generalized problem.

1

2

3

45

1

-2

4

-5

Figure 3. Basis subnetwork with a cycle

For the example of Fig. 3, with basis {1, 2, 4, 5} we have

Column a1 a2 a4 a5

B =









1 1 0 0

–1/3 0 1 0

0 –1/2 0 1

0 0 –1/4 –1/4

The fact that the determinant of this matrix is not zero implies that the columns are
independent and that the selected arcs do form a basis.

It can be shown that the subnetwork defining a basis for the
generalized network problem will consist of a tree rooted at the slack node
and any number of components, each containing a single cycle. The
components containing cycles are called 1-trees because they each contain
one more arc than a tree. The total number of arcs in the collection of 1-
trees and the single tree rooted at the slack node will always be m – 1.
Fig. 4 shows several basis subnetworks for the example network. For
the illustration we have added an artificial arc (6) from the slack node to
node 1.

Basic Solutions 5

S 1

2

3

4
1

3
4

6 S 1

2

3

43

4

6
-5

S 1

2

3

4
1 4

6
-5

S 1

2

3

4
-1 -4

2 5

a. b.

c. d.

Figure 4. Subnetworks defining bases for the example problem

We show the basis as a subnetwork consisting of both forward
and mirror arcs as in Fig. 3 and 4. For the tree containing the slack node,
the arcs are oriented so that the tree is a directed tree rooted at the slack
node. For subnetwork components containing a cycle, the cycle arcs are
oriented to form a directed cycle (there are always two acceptable
orientations). The arcs not on the cycle are oriented to form a directed
spanning tree with the cycle representing the root node. For many
purposes it is useful to consider a mirror arc (-k) as an arc oriented in the
opposite direction to arc k with gain and cost respectively:

g–k = 1/gk, c–k = –ck/gk.

This is equivalent to making the transformation x–k = –xk gk in the
original model. The transformed column in A for arc –k is computed as
a-k = –ak/gk. In the following discussion we make whatever trans-
formation necessary to represent the basis with directed trees and cycles,
realizing the original flows can be recovered by taking the inverse trans-
formation:

xk = –x–k/gk.

In terms of the transformed variables, the basis for the example of
Fig. 3 is nB = [–2, 1, –5, 4]. As for other linear programming problems
we use the nB vector to describe the basis. The element nBi is the
predecessor arc for node i in the basis subnetwork. Now the basis matrix
becomes

Arc: a–2 a1 a–5 a4 Node

B =








–2 1 0 0

0 –1/3 0 1
1 0 –4 0
0 0 1 –1/4

1
2
3
4

6 Generalized Network Flow Programming

It is useful to determine descendant lists of the nodes and arcs in
the basis subnetwork. This is complicated by the fact that all the nodes
on a cycle are in fact both successors and predecessors of each other. We
arbitrarily select some node on the cycle, identify it as the root node, and
for the purpose of creating the list, neglect the predecessor arc to that
node. The remaining nodes are ordered so that a node will appear before
all its descendants. Choosing node 2 as the root for the example, the
descendant node list is {2, 4, 3, 1}. The descendant arc list is created by
listing the predecessor arcs for each node in the order in which they
appear in the descendant node list. For the example, the descendant arc
list is {1, 4, –5, –2}.

It is interesting to arrange the rows and columns of the basis
matrix according to the descendant node and arc lists. Then we have.

Arc: a1 a4 a–5 a–2 Node

B =








–1/3 1 0 0

0 –1/4 1 0
0 0 –4 1
1 0 0 –2

2
4
3
1

This matrix has all the arc gains on the diagonal, and all the entries below
the diagonal are zero except one. This form is typical when the basis is a
1-tree.

To present the results in somewhat greater generality we consider
the two types of basis components, shown in Fig. 5, that might be
present in a generalized problem. Fig. 5a shows a component rooted at
the slack node, and Fig. 5b shows a component rooted at a cycle. For
simplicity we have indexed the nodes and arcs so that arc i is the
predecessor arc of node i.

a.

1

2

3

4S
1

2

3

4

g
1

g
2

g
3

g
4

b
.

1

2

3

4

1

2

3

4

g
1

g
2

g
3

g
4

S

Figure 5. a. A basis with a tree rooted at the slack node

b. A basis with a component rooted at a 1-tree

We show the basis matrices for the two cases with the subscripts
a and b providing identification.

Basic Solutions 7

Arc: a1 a2 a3 a4 Node

Ba =






–g1 1 1 0

0 –g2 0 1
0 0 –g3 0
0 0 0 –g4

1
2
3
4

Arc: a1 a2 a3 a4 Node

Bb =







–g1 1 0 1
0 –g2 1 0
1 0 –g3 0
0 0 0 –g4

1
2
3
4

The basis of type a is an upper diagonal matrix, with the gain
factors appearing on the diagonal and all entries below the diagonal equal
to zero. The determinant of this matrix is easily seen to be the product of
the arc gains.

|Ba| = g1g2g3g4

In general for a basis component describing a tree rooted at the slack
node, the determinant of the basis matrix is equal in magnitude to the
product of the gains of the basic arcs. Let B be the set of arcs in the basis
component.

|B | = ± gk
k ∈B
∏

As long as the gains are nonzero the determinant cannot be zero, so any
tree defines a nonsingular basis.

To evaluate the determinant of Bb, we note that the matrix has
two parts, the cycle part consisting of the intersection of rows and
columns 1, 2, and 3, and the tree part consisting in this case of row and
column 4. Expanding the determinant about row 4, we have

|Bb| =







–g1 1 0 1
0 –g2 1 0
1 0 –g3 0
0 0 0 –g4

 = –g4








–g1 1 0

0 –g2 1
1 0 –g3

Now expanding the determinant about the first column, we find that

|Bb| = –g4(–g1g2g3 + 1).

We identify the factor g1g2g3 as the product of the gains on the cycle arcs

and give it the general designation , called the cycle gain. Thus the
determinant is

8 Generalized Network Flow Programming

|Bb| = g4(– 1).

In general for a 1-tree, the determinant of the basis is equal in
magnitude to the product of the gains for the arcs not on the cycle multi-
plied by the cycle gain less 1. Let T be the set of arcs not on the cycle.
Then the determinant is

|B | = ± (– 1) gk
k ∈T
∏

where the cycle gain is

 = gk
k ∈B− T
∏

This determinant is nonzero if none of the arc gains are zero and
the cycle gain does not equal 1. The latter condition is a requirement for
nonsingular basis matrices. The cycle gain plays an important role in the
simplex algorithm for generalized networks.

Basis Inverse

As for the pure problem, we do not use the basis inverse explicitly in the
computational methods, rather, we compute the information we need
about the basis inverse whenever it is required. To gain some un-
derstanding of the procedures, however, and to provide a link to general
linear programming, we describe in this section a method for constructing
the basis inverse matrix.

The basis inverse is a square matrix with a column for each node
and a row for each basic variable. Let ki represent the entry in the basis
inverse for basic arc k and node i. Note that i will range from 1 to m–1,
however, k will take on the designations of arcs in the basis network.
The index k will be negative for mirror arcs. It can be shown that ki is
the negative of the flow required in arc k if one unit of flow is withdrawn
at node i. In the following we determine this flow in order to determine
the value of ki.

Let the path terminating at arc i in the basis tree be a subnetwork
with t arcs, K p = {k1, k2, k3,…, kt}, and t + 1 nodes, Ip = {i0, i1,i2,
…, it}. The node set and arc set are ordered so that the indices show the
sequence of arcs in the path. The final node is it = i. The path may
originate at the slack node as in Fig. 6, in which i0 = m, or originate with
a cycle as in Fig. 7. When the path originates with a cycle, some node j
is listed twice in the node list. We will call this the junction node and note
that i0 = j.

Basic Solutions 9

m

i

k

p

g
k

Figure 6. Tree component of basis network

The effect on the flow of basic arc k of drawing one unit of flow
out of node i depends on whether the arc is on a cycle. First consider the
case when arc k is not on a cycle. Withdrawing one unit of flow from
node i only affects the flows on basic arcs that are on the path to node i,
so assume k is on the path. Let ki be the product of the arc gains from

the origin node of arc k to node i (note that ki includes the factor gk).

The amount of flow required on arc k is simply 1/ ki . Then the entry in
the basis inverse for the row associated with arc k and the column for
node i is:

ki =





0 if arc k is not on the directed path to node i

–1/ ki if arc k is on the directed path to node i

 but not on a cycle.

 (1)

i

k

p
j

q

r

Figure 7. 1-Tree component of basis network

To determine the flow required on basic arc k when it is on the
cycle of a 1-tree as in Fig.7, consider first the effect of the cycle in a
generalized network. Say node j is a node on the cycle that originates arc
q, where arc q is on the directed path to node i but not on the cycle. Let
arc p be the cycle arc terminating at node j and let r be the cycle arc
originating at node j. xp and xr are related by the cycle gain: gpxp = xr.
Conservation of flow at node j requires that the flow entering node j on
arc p must equal the flow leaving node j on arcs q and r.

10 Generalized Network Flow Programming

gpxp = xq + xr or

xp =
−1




 




 

xq

gp




 




 

Note that the flow on adjacent arcs p and q are again related by the
arc gain of p, but the fact that arc p is on the cycle requires that the flow
xq be multiplied by the adjustment factor /(– 1). To simplify the

following expressions let = /(– 1). The term in the basis inverse
corresponding to basic arc k and node i is:

ki =





0 if arc k is not on the directed path to node i
–1/ ki if arc k is on the directed path to node i
 but not on a cycle
– / ki if arc k is on the directed path to node i
 but on a cycle.

 (2)

Equation (2) is general in that it also covers the tree case of Eq.
(1), so we will use Eq. (2) in the following.

To illustrate the application of this expression, consider again Fig.
5. In Fig. 5a the basis has a tree with no cycles. Repeating the figure
with the arc gains shown, one can easily apply Eq. 2 to obtain the basis
inverse below. As the basis is an upper diagonal matrix, so is the basis
inverse.

1

2

3

4S
1

2

3

4
g

1

g
2

g
3

g
4

Node: 1 2 3 4 Arc

Ba
–1 = –







1/g1 1/g1g2 1/g1g3 1/g1g2g4

0 1/g2 0 1/g2g4

0 0 1/g3 0

0 0 0 1/g4

1

2

3

4

Basic Solutions 11

Applying Eq. 2 to the 1-tree of Fig. 5b (repeated below) we obtain the
basis inverse for this case.

1

2

3

4

1

2

3

4

g
1

g
2

g
3

g
4

S

Here = g1g2g3, and = /(– 1). The basis inverse
determined according the rules of Eq. (2) is:

Node: 1 2 3 4 Arc

Bb
–1 = –









/g1 /g1g2 /g1g2g3 /g1g4

/g1g2g3 /g2 /g2g3 /g1g2g3g4

/g1g3 /g1g2g3 /g3 /g1g3g4

0 0 0 1/g4

1

2

3

4

In Fig. 8, we show again the basis 1-tree for the example of Fig.
3. The arc gains associated with the basic arcs are shown on the figure to
help with the computation of the basis inverse.

1

2

3

4

(1/3) (1/4)

(2) (4)

5

1

-2

4

-5

(gain

Figure 8. Example basis with gains

To compute the basis inverse for the example it is best to list the arcs and
nodes in descendant order and then construct a table for computing the
product of arc gains, ki, as illustrated below. The elements of the table

12 Generalized Network Flow Programming

are computed one column at a time. The column for node i is constructed
by tracing the path entering node i backwards using the predecessor arc
defined for each node. The ki quantities can then be easily computed in a
cumulative fashion. When the path to a node includes a cycle, the cycle
gain, , and corresponding multiplier, , are shown at the bottom of the

column. In the following table we use the values of ki and Eq. (2) to
compute the basis inverse.

Computation of ki
Nodes

Arc Arc gain 2 4 3 1

1 1/3 1/3 1/12 1/3 2/3

4 1/4 2/3 1/4 1 2

–5 4 8/3 2/3 4 8

–2 2 2/3 1/6 2/3 2

2/3 2/3 2/3 2/3

–2 –2 –2 –2

Computation of the basis inverse

Nodes

Arcs 2 4 3 1

1 6 24 6 3

4 3 8 2 1

–5 3/4 3 1/2 1/4

–2 3 12 3 1

Although we have shown how to compute the basis inverse for
the generalized network problem, computer programs implementing the
simplex algorithm will not actually maintain this inverse for computational
processes, rather, each column will be computed when needed directly
from the tree representation.

Nonbasic Variables

The arcs not selected as basic arcs are the nonbasic arcs. In a basic
solution, each nonbasic arc, k, will have its flow at zero, the lower
bound, or uk, the upper bound. Let the set n0 be the set of nonbasic arcs
with zero flow, and let n1 be the set of arcs with upper bound flow. To
represent a specific case graphically we will show the members of n1 as
dotted lines.

Basic Solutions 13

Primal Basic Solution

Given a selection of basic arcs and an assignment of nonbasic arcs to
either n0 or n1, there is a unique assignment of flows to the basic arcs.
Let xB be the vector of flows on the basic arcs.

To solve for the basic arc flows, we must first adjust the external
flows for the flows in the nonbasic arcs at their upper bounds. Eq. 3
defines an adjusted external flow for node i, bi', that is the original
external flow reduced by the flow of the upper bound arcs leaving the
node and increased by the flow on the upper bound arcs entering the
node.

bi' = bi – ∑
j∈(K O(i)∩n1)

 uj + ∑
j∈(K T(i)∩n1)

 gkuj (3)

Let i be column i of the basis inverse. Then the basic solution is

xB = ∑
i=1

m–1

 ibi' (4)

For the basis given for the example problem the basic variables
are

Node 1 4

xB =






x1

x4
x–5
x–2

 = 4








3

1
1/4
1

 + (–3/8)








24

8
3
12

 =








3

1
–0.125
–0.5

Transforming the mirror arc flows to obtain the original flows
using the equation xk = –x-k /gk , we obtain the basic flows shown in
Fig. 9.

14 Generalized Network Flow Programming

(3, 3, 1/3)

1

2

3

4

(1, 1, 1/4)

(1, 4, 1/2) (0.5, 1, 1/4)

(0, 3/2, 1/2)

[4]

[0]

[–3/8]

[0]

[external flow]
(flow, upper bound, gain)

1 4

3

2 5

5

Figure 9. Primal network for example basis

For this computation, it is only necessary to compute the columns of the
basis inverse that are associated with nonzero node external flows.

Computing the Dual Variables

The dual variables are identified with the nodes of the network. Thus we
call i , the dual variable, or alternatively the node cost, for node i. The
complementary slackness condition of linear programming requires that
the dual constraints associated with the basic variables of the primal must
be tight. Thus for each basic arc, k(i, j), the following constraint must be
satisfied.

i – gk j = ck

For that part of the basis comprised of the tree rooted at the slack
node, the dual variables are easily determined by first assigning the slack
node the value zero.

m = 0

Then for each basic arc in the tree, k(i, j), where i = ok and j = tk, assign
dual values so that

j = (i + ck)/gk. (5)

When the dual variables are assigned in order of the descendant vector of
the slack node, this expression is used sequentially to assign dual
variables to all the nodes in the subtree of the slack node. For the
example case of Fig. 5a.

Id = {s, 1, 2, 3, 4}.

Following the order prescribed by this vector

s = 0

Basic Solutions 15

1 = (s + c1)/g1

2 = (1 + c2)/g2

3 = (1 + c3)/g3

4 = (2 + c4)/g4

For components rooted at a cycle, the process is a little more
complicated. For the example of Fig. 5b, the following conditions must
hold relating the nodes on the cycle.

1 = (3 + c1)/g1

2 = (1 + c2)/g2

3 = (2 + c3)/g3

Solving for 1 we discover that

1 = (c2 + g2c3 + g2g3c1)/(– 1)

Once one of the dual variables on the cycle is determined, all
others can be determined using Eq (4). In general, for any node on a
cycle the dual variable is

i =
cost of routing one unit around the cycle starting at node i

 – 1

1

2

3

4

(2, 1/3) (12, 1/4)

(–40, 2) (–8, 4)

5

1

-2

4

-5

[node cost]
(arc cost, gain)

[24]

[78]

[360]

[88]

[0]

Figure 10. Dual network for the example

For the example shown in Fig. 10, all nodes are on a single cycle.
Mirror arc costs are calculated from original arcs as: c-k = –ck/gk. We

have as 2/3. First determining 1, we compute the cost of routing one
unit of flow around the cycle starting at node 1.

c1 + g1c4 + g1g4c–5 + g1g4g–5c–2

= 2 + (1/3)(12) + (1/3)(1/4)(–8) + (1/3)(1/4)(4)(–40)

= –8

16 Generalized Network Flow Programming

Dividing this number by –1 we obtain

1 = 24.

The other dual variables are computed with Eq. (5).

2 = (24 + 2)/(1/3) = 78,

4 = (78 + 12)/(1/4) = 360,

3 = (360 – 8)/4 = 88.

The vector of dual variables is then

 = (1, 2, 3, 4, 5) = (24, 78, 88, 360, 0),

Arc Marginal Cost and Conditions for Optimality

For the generalized network, the marginal cost for the general nonbasic
arc k(i, j) is

dk = ck + i – gk j . (5)

If the solution is optimal, for each nonbasic arc k(i, j) one of the
following conditions must hold:

If xk = 0, then dk ≥ 0. (6a)

If xk = uk , then dk ≤ 0. (6b)

When some nonbasic arcs do not satisfy the condition, the
solution is not optimal, and an arc, which violates the optimality
condition, must be selected to enter the basis. For the bounded variable
simplex method a variable can enter the basis by going up from zero or by
going down from its upper bound. Actually any nonbasic variable
violating an optimality condition may be selected, however, for simplicity
we choose the variable which violates the optimality condition the most.
Thus we will choose the entering variable k* according to the rule

dk* = max


max{–dk :dk < 0 and k ∈n0}

max{dk :dk > 0 and k ∈n1}
(7)

For the example problem the only nonbasic arc is arc 3(2, 3). The
marginal cost for this arc is

d3 = 2 + c3 – g3 3

= 78 + 1 – (0.5)(88)

= 35.

Since the marginal cost is positive, and the flow in arc 3 is zero, this arc
satisfies the optimality condition. Since this is the only nonbasic arc, the
solution given must be optimal.

Primal Simplex 17

C.3 Primal Simplex
There are a number of aspects of the primal simplex algorithm that are the same for the pure
and generalized problem. After a review of the similarities, we consider the primary
difference, determining the arc to leave the basis. We then present an example of a
complete generalized network solution.

The Primal Simplex Algorithm

The overall algorithm implementing the primal simplex remains the same as
for the pure problem. The algorithm begins with a basic feasible solution.
After the initial primal and dual solutions and the initial basis subnetworks
are constructed, the algorithm proceeds iteratively as follows:

• Check the solution for optimality.

• If not optimum, select an arc to enter the basis.

• Determine the arc that must leave the basis.

• Change the basis subnetwork by deleting the leaving arc and adding
the entering arc.

• Compute the new primal and dual solutions.

The Initial Solution

As for the pure problem, one can form an initial basic solution by adding an
artificial arc for each node. If some node i has negative or zero external
flow, the artificial arc is directed from the slack node to node i. If node i
has positive external flow, the artificial arc is directed from node i to the
slack node. The gains of the artificial arcs are set to one. Initially the
artificial arcs carry the external flows. The initial basis subnetwork consists
only of the artificial arcs, so the initial basis forms a tree. The simplex
algorithm is implemented in two phases, with the first driving out the
artificial arcs and the second obtaining the optimal solution.

The Entering Arc

The process of selecting the entering arc uses the marginal cost associated
with each nonbasic arc. The marginal cost for arc k(i, j) is as follows.

dk = i + ck – gk j

Although, the computation of the marginal cost is slightly different than for
the pure problem since it involves the gain factor, the conditions for
optimality remain the same as for the pure problem. Any arc that does not
satisfy the conditions may enter the basis. The strategies for the selecting
the entering arc remain an optional part of the algorithm and can follow the
approaches for the pure problem or for more general linear programs.

18 Generalized Network Flow Programming

The Leaving Arc

Structure

Given an arc to enter the basis, some basic arc must leave. For the pure
problem, the entering arc always forms a cycle when inserted in the basis
subnetwork. Because a flow change on the entering arc only affects basic
arcs on the cycle, the leaving arc must be one of these arcs.

For the generalized problem, the basis subnetwork consists of a tree
rooted at the slack node and perhaps other components in the form of 1-
trees. Because of the nonunity arc gains, a flow change in the entering arc
will cause unequal flow changes on basic arcs, and the leaving arc may be
in a variety of locations. Fig. 11 illustrates the possible situations that can
arise.

(a)

S

i
E E

j

N
i

Ek

F R

C

(b)

S

i
E Ej

E
k

F R

Rj

Reverse
Cycle

(c)

S

i
E Ej

E
k

RF

F
j

Forward
Cycle

(d)
i
E E

j

E
k

F

Fj

Forward
Cycle

R

R
j

Reverse
Cycle

(e)
i
E Ej

N
i

Ek

F R

Fj

Common
Cycle

(f)

Rj

i
E E

j

E
k

F R

F
j

Common
Cycle

Figure 11. Possible basis configurations with the entering arc

Primal Simplex 19

In the figure we assume that flow is increasing in the entering
arc. This causes flow to increase in the forward paths, labeled F, and
decrease in the reverse paths, labeled R . The paths labeled C are
common to the forward and reverse paths. The direction and amounts
of flow change in C depend on the relative gains of the forward and
reverse paths.

Fig. 11a illustrates the only case possible for the pure problem.
Here the entering arc connects two nodes on the tree forming the cycle
indicated by F and R . The leaving arc must be in one of these two
paths. For the generalized network when the gains of the paths are not
the same, flow will also change in path C , and the leaving arc may be in
this segment. If the leaving arc does happen to be in path C , the new
basis subnetwork will have a new 1-tree with the cycle formed by F, R ,
and kE.

In Fig. 11b, c, and d, the entering arc connects two components
of the basis subnetwork. In case b, increasing flow in the entering arc
draws additional flow from the slack node, and flow is decreased in the
reverse path. The flow change must be absorbed in the cycle. In the
other cases flow is either absorbed or generated by the cycles,
represented as a decrease or increase of flow on the cycle arcs. Flow
generation or absorption in cycles is possible only because the cycle
gain is not unity. The leaving arc may be in any path shown on these
figures. After the basis change, the basis subnetwork may take a variety
of forms. When a cycle arc leaves, a 1-tree is destroyed and two
components become one.

In Fig. 11e and f, the forward and reverse paths are in the same
component rooted at a cycle. When the leaving arc is on the cycle, the
entering arc will form a new cycle and the component will remain as a 1-
tree.

Computing the Marginal Flow Change

After an arc has been selected to enter the basis, we move to an adjacent
feasible basic solution by increasing or decreasing the flow in the
entering arc. While changing the flow on the entering arc, the flows in
some of the basic arcs must also change in order to maintain
conservation of flow at the nodes. The flow changes in the entering arc
by an amount that will just drive the flow on one of the basic arcs to
zero or to its upper bound, or drive the flow on the entering arc to zero
or to its upper bound.

Although algorithms that implement this step construct the list of
arcs and their marginal flow changes from the basis tree itself, we resort
to using the columns of the basis inverse as discussed in the last section.
Let i be column i of the basis inverse. An element hi is the marginal
decrease in the flow in basic arc h per unit increase in the flow
withdrawn from node i. As discussed in the last section, the
components of the inverse are computed directly from the basis
subnetwork whenever required.

Say we have identified an arc k(i, j) with gain gk to enter the
basis by increasing its flow from zero by an amount ∆f. This causes an

20 Generalized Network Flow Programming

increase in the flow withdrawn from node i of ∆f, and a decrease in the

flow withdrawn from node j of gk∆f. Assume that the current basic
flows are described by the vector x 'B. The new flows caused by a

change of ∆f will be

x 'B = xB∆f (i – gk j)

We identify the terms in the parenthesis as the marginal change vector
yk. When the flow in the entering arc k is to increase from zero, the
marginal change vector is given by Eq. (8).

If xk is increasing: yk = i – gk j. (8)

Note that this corresponds to a similar definition of yk from general linear

programming theory. In general, yk = B–1ak. Since the for the generalized
network problem, the vector ak for arc k(i, j) has a +1 coefficient for node i, and a
–gk coefficient in row j, the result for a network problem is as noted in Eq. (8).

The arc entering the basis may be decreasing from its upper
bound. In this case we will still take the flow change, ∆f, as a positive
quantity, but we will define the marginal change to be the negative of
Eq. (8).

If xk is decreasing: yk = – i + gk j (9)

Identifying the arc to leave the basis

In order to determine the arc to leave the basis, we must write explicitly
the basic flows as a function of the flow change. We have chosen to
always show flow in the forward arc direction, regardless of the
orientation of the arc in the basis subnetwork. A basic arc, h, may
appear as a forward arc (h > 0) or as a mirror arc (h < 0), but we will
always refer to the flow in the arc in the forward direction x |h|.

The vector yk has component, yhk, that indicates the marginal
change in arc h as arc k enters the basis. Let x | h| be the current flow in
arc |h|. With the flow change, the new flow in the arc depends on
whether it appears as a forward or mirror arc in the basis.

x |h| =






x |h| – ∆fyhk i f h > 0

 x

 | h| + ∆fghyhk i f h < 0
(10)

For feasibility the new flow must between zero and the upper bound:

0 ≤ x |h| ≤ u|h|

Considering the signs of the various factors this leads to the following
conditions that must be satisfied by the flow change.

Primal Simplex 21

Forward Arc (h > 0) yhk > 0 yhk < 0

∆f ≤ x h/yhk ∆f ≤ –(uh – x h)/yhk

Mirror Arc (h < 0) ghyhk > 0 ghyhk < 0

∆f ≤ (u|h| – x |h|)/ghyhk ∆f ≤ –(x |h|)/ghyhk

Thus we have a quite complicated ratio test that depends on the
orientation of the arcs in the basis and the signs of the marginal change
and gain factors.

 ∆f = Min









min{xh/yhk : yhk > 0 and h > 0}

min{– (uh – x

h)/yhk : yhk < 0 and h > 0}

min{(u|h| – x |h|)/ghyhk : ghyhk > 0 and h < 0}

min{– (x |h|)/ghyhk : ghyhk < 0 and h < 0}

uk

1

2

3

4

5

 (11)

The arc leaving the basis is the arc h for which the minimum is obtained.
In cases 1 and 4, arc h leaves the basis by going to zero. In cases 2 and
3 the arc leaves the basis by going to its upper bound. Case 5 indicates
that no arc leaves the basis as the flow goes to its opposite bound.

Illustration

Although we have an optimal solution for the example, we will allow
arc 3 to enter the basis to illustrate this procedure. The basis inverse
obtained for the example in the last section is shown again below. The
columns are identified by node number and the rows are identified with
the basic arcs.

Basis inverse

Nodes

Arcs 2 4 3 1

1 6 24 6 3

4 3 8 2 1

–5 3/4 3 1/2 1/4

–2 3 12 3 1

Since arc 3(2,3) is to enter the basis, the marginal change vector is
computed from Eq. (1) as

y3 = 2 – g3 3.

22 Generalized Network Flow Programming

y3 =








6

3
3/4
3

 – (1/2)








6

2
1/2
3

 =








3

2
1/2
3/2

 .

The table below helps to perform the ratio test. The case column
refers to the line of Eq. (11) used to compute the ratio.

Basic arc (h) gain (gh) yhk Case x |h| Ratio

1 1/3 3 1 3 1
4 1/4 2 1 1 1/2
–5 4 1/2 3 1/2 1/4
-4 2 3/2 3 1 1

The minimum ratio is 1/4, obtained for arc –5. Because 1/4 < 3/2, the
upper bound for arc 3, arc 5 will leave the basis ∆f = 1/4. Computing the
new flows, we have

for forward arcs: xh = xh' – ∆fyhk

x1 = 3 – 3(1/4) = 9/4

x4 = 1 – 2(1/4) = 1/2

for mirror arcs: x-h = x-h' + ∆fyhkgh

x5 = 1/2 + (1/2)(4)(1/4) = 1

x2 = 1 + (3/2)(2)(1/4) = 7/4

for the entering arc: xk = ∆f , x3 = 1/4.

These flows are shown in Fig. 12.

[4]

[0]

[0]

1

2

3

45

[-3/8]

(7/4, 1/2)

2
5

(1, 1/4)

1

(9/4, 1/3)
4

(1/2, 1/4)

3 (1/4, 1/2)

Figure 12. Arc flows for the basis when arc 3 is added and arc 5 is removed

Primal Simplex 23

Changing the Basis Subnetwork

Although Fig. 11 illustrates the complexity that can arise concerning the
entering and leaving arc, the actual process of forming the new basis
subnetwork is the same for the generalized network as for the pure network.
Given the identity of the entering and leaving arc, the basis subnetwork is
changed by:

• Delete the leaving arc.

• Add the entering arc.

• Reverse the orientation of all arcs between the terminal node of the
entering arc and the terminal node of the entering arc.

The last step of this procedure assures that each component of the basis
subnetwork is either a directed tree rooted at the slack node, or a directed 1-
tree rooted at a cycle. Fig.13 shows the new basis when arc 3 enters and
arc –5 leaves. We will see a number of other examples of this in the
problem that appears at the end of this section.

5 1

2

4

[13/2]

[51/2]

[150]

[53]

(-40, 2)

2

3
5

1

(2, 1/3)
4

(12, 1/4)

3 (1, 1/2)

Figure 13. New basis subnetwork formed by adding arc 3 and removing arc 5

Compute the New Primal and Dual Solution

The new primal solution is obtained using the marginal equations used
earlier in the development of the ratio test.
For the basis arcs

x |h| =


x |h| – ∆fyhk i f h > 0

 x

|h| + ∆fghyhk i f h < 0
 (12)

For the entering arc

If xk is increasing from zero: xk = ∆f.

If xk is decreasing from its bound: xk = uk – ∆f.

The new dual solution need be computed for only the portion of
the basis tree that has changed. Let k(i, j) be entering the basis. Define
a node r as the root node. If k appears in the tree in the forward

24 Generalized Network Flow Programming

direction, the component of the tree that is rooted at node j will have
revised dual values. In this case let r = j. If k appears in the mirror
direction in the new subnetwork (–k is in the subnetwork), the
component of the tree rooted at node i will have changed dual values, so
let r = i.

List the successor nodes to node r in successor order, and use
the defining equations to compute the new dual values for the tree rooted
at r.

Complete Algorithm

To illustrate the simplex algorithm applied to the generalized network,
we show the sequence of basic subnetworks obtained for the example
network given in Fig. 14 starting from a completely artificial basis.

[external flow]
(upper bound, cost, gain)

(3, 0, 1/3)

1

2

3

4

(1, 0, 1/4)

(4, 0, 1/2)
(1, 0, 1/4)

(3/2, 0, 1/2)

[4]

[0]

[–3/8]

[0]

1 4

3

2
5

5

(1, 1, 1)

(1, 1, 1)

(1, 1, 1)

(1, 1, 1)

6

7

8

9

Figure 14. Example network with artificial arcs

Primal Simplex 25

Dual Network

[Node Cost]
(Arc Cost, Arc Gain)

Primal Network

[Fixed External Flow]
(Arc Flow, Arc Gain)

Initial Artificial Basis

1

2

3

4

[-1]

[1]

[1]

[1]

5

(1, 1)

(-1, 1)

(1, 1)

(1, 1)

7

-6

8

9

1

2

3

45

(0, 1)

(4, 1)

(0, 1)

(3/8, 1)

7

6

8

9

[4]

[0]

[–3/8]

[0]

Arc 2 enters the basis and arc 8 leaves

1

2

3

4

[1]

[1]

5

(1, 1)

(1, 1)

7

9

[-2]

(0, 1/2)

2

[-1]
(-1, 1)

-6 1

2

3

45

(0, 1)

(4, 1)

(3/8, 1)

7

6

9

[4]

[0]

[–3/8]

[0]

(0, 1/2)

2

Arc 5 enters the basis and arc 5 leaves

1

2

3

4

[1]

[1]

5

(1, 1)

(1, 1)

7

9

[-2]

(0, 1/2)

2

[-1]
(-1, 1)

-6

2

4

[1]

5

5

1

2

3

45

7

9

2

2

45

5

(0, 1)

(2, 1)

(1/8, 1)

6

[0]

[–3/8]

[0]

(2, 1/2) (1, 1/4)

[4]

Arc 1 enters the basis and arc 7 leaves

1

2

3

4

[-3]

[1]

5

(1, 1)

9

[-2]

(0, 1/2)

2

[-1]
(-1, 1)

-6 1

2

3

4

(0, 1/3)
1

5

1

2

3

45

9

2

1

2

3

4

1

5

(0, 1/3)

(2, 1)

(1/8, 1)

6

[0]

[–3/8]

[0]

(2, 1/2) (1, 1/4)

[4]

26 Generalized Network Flow Programming

Arc 4 enters the basis and arc 9 leaves

1

2

3

4

[-3]

[-12]

5

[-2]

(0, 1/2)

2

[-1]
(-1, 1)

-6 1

2

3

4

(0, 1/3)
1

5

(0, 1/4)
4

1

2

3

45

2

1

2

3

4

1

5

4

(3/2, 1/3)

(1/2, 1)

[0]

[–3/8]

[0]

(2, 1/2) (1, 1/4)6

[4]

(1/2, 1/4)

Arc 3 enters the basis and arc 1 leaves

1

2

3

45 1

2

3

45

End phase 1 and begin phase 2

1

2

3

45 1

2

3

45

Arc -4 enters the basis and arc 3 leaves

1

2

3

45 1

2

3

45

Exercises 27

C.4 Exercises

1. For the example of Fig. 1, show the basis and basis inverse for each of the basis
subnetworks shown in Fig. 4.

2. The tree shown below represents a basic solution to some network problem. Arc (13,9)
is chosen to enter the basis. List the set of arcs from which the leaving arc must be
chosen for each of the problem classes listed.

a. Generalized minimum cost flow:

b. Pure minimum cost flow:

1

2

3

4

5

6

7

8

9

10

11

12

13

14
1

2

3

4

5

6

7

8

9

10

11

13
12

3. Consider the network below with the added information that all arc gains are 2. For
each basis show the basis tree, primal variables, and dual variables. All nonbasic
variables have 0 flow. Select the arc to enter the basis for the next iteration.

a. nB = { 1, 2, 4, 6, 8, 10, 12, 14}

b. nB = { 1, 2, 4, 6, 11, 12, 13, 14}

4

1

2

3

4

5

6

7

8

9

8 12

6 10 14

5

3

9

7

13

11

16

15

1

2

(10, 4) (11, 23) (12, 4)

(10,18) (11, 8) (11, 11)

(4
, 4

)

(4
, 2

)

(4
, 3

)

(5
, 7

)

(4
, 6

)

(6
, 1

)

(4
, 5

)

(7
, 3

)

(9, 1
2)

(9, 7)

[–8]

[–8]

[0, 20, 0]

[Fixed flow, slack flow, slack cost]
(upper bound, cost)

28 Generalized Network Flow Programming

4

1

2

3

4

5

6

7

8

9

8 12

6 10 14

1

2

(1) (2) (4)

(1) (2) (4)

[π]
(x)

(1)

gain = 1

all arcs have
gain = 2

[0]

[6] [5] [14] [9]

[3.5] [10.75] [9.375] [10.188]

4

1

2

3

4

5

6

7

8

9

12

6 14

13

11

1

2

(0) (4)

(0) (4)

(0)

gain = 1

[π]
(x)

[0]

[3.5] [10.75]

[2.67] [6.83]

[6] [5] [4.33] [4.17]

4. The LP formulation of a network problem includes the set of linear conservation of
flow equations: Ax = b, where A is the incidence matrix defined by the arcs of the
network, b is a vector of external flows and x is the flow vector. When a basis is
defined and all nonbasic flows are zero, the set of equations: BxB = b is appropriate
to determine the basic flows xB.

The network below shows part of the basis for a generalized network problem. The
arc gains and external flows are as shown. Write the set of equations BxB = b and
solve them for the basic flows.

1

2 3 4

(0.5)

(0.5)

(2)

(4)

1

2

3

4

[–2]

[Fixed Flow]
(Gain)

Exercises 29

5. The figure provides some information about a general arc k that originates at node i
and terminates at node j. Each part of the problem gives some additional information.
Given the conditions stated in each part, say as much as you can about the unknowns
xk and j. The parts are independent and the conditions given in one part do not hold
in the other parts.

i j

[= 28] [= ?]
(x = ?, u = 12, c = –4, g = 0.8)

a. Arc k is basic.

b. Arc k is nonbasic with xk = 12. The solution is optimal.

c. Arc k is nonbasic, the solution is optimal and j = 27.

d Arc k is chosen to enter the basis with j = 23.

6. The figure below shows a generalized network. Node 6 is the slack node. All flows
are zero. Let the basis consist of arcs 3, 6, 8, 9, and 10.

a. Compute the node potentials ().

b. Compute the flows on the basic arcs for an external flow of 1 at node 5. All
nonbasic flows are zero.

c. List the tree arcs and tree nodes in predecessor order. Also show the depth of each
node.

d. Let arc 4 enter the basis and arc 3 leave. Sketch the new basis network, and list
the nodes and arcs in predecessor order.

1 2

3 4

56

(Capacity, Cost, Gain)

(12, 3, 2)

1

(13, 3, 1)

8

(3, 0, 1)
6

(3
, 0

, 1
/3

)

10

(2
, 0

, 1
)

11

(4, 0, 1)12

(1
2,

 1
, 0

.7
5)

3

(11,2, 1)

5

(1
2,

 0
, 1

)

4

(11, 2, 0.5)2

(13, 1, 2) 9 (1
2,

 6
, 1

)

7

30 Generalized Network Flow Programming

7. The figure shows a generalized
minimum cost flow problem.
Using the basis shown by the
heavier lines, compute the flows
on the basic arcs and the node
costs. Assume all nonbasic arcs
have zero flow. Check the
solution for optimality. If it is
not optimal identify an arc to
enter the basis. Select the arc to
leave the basis, and construct the
new basis tree. Node 1 is the
slack node.

1

2

3

4

5

6

1

2

3

4

5

6

7

8

(5
,1

,0
.5

)

(5,3,0.5)

(7,2,0.5)

(3
,1

,0
.5

)

(12,1,0.5)

(4,2,4)

(2
0,

4,
0.

5)

(4,2,4)

[–3]

(Capacity, Cost, Gain)
[External Flow]

8. The figure shows a generalized
network with infinite capacity on
all arcs. The heavy lines show
the initial basis. The arc to enter
the basis using the "most
negative" rule. Change the
basis. Show the new basis and
new node costs. Node 1 is the
slack node.

(Cost, Gain)
[External Flow]

1

2

3

4

5

6

1

2

3

4

5

8

7

10

(1
0,

 2
)

(2, 0.5)

(6, 2)

(1
,0

.8
)

(5, 2)

(1
0,

 1
)

(–5,0.4)

[–1]
6

9

(3,0.5)

(1
, 2

)

(5
, 3

)

Exercises 31

9. The figure shows a generalized
network with flows capacities
and gains. The heavier lines
identify the current basis. Let arc
3 enter the basis. Find the arc to
leave the basis. Find the flows
associated with the new basic
solution. Draw the new basis
network. Node 1 is the slack
node.

(Flow, Capacity, Gain)
[External Flow]

1

2

3

4

5

6

1

2

3

4

5

8

7

10

(0
, 1

, 2
)

(0, 3, 0.5)

(2, 4, 2)

(0
, 3

,0
.8

)
(0, 10, 2)

(1
2,

 1
5,

 1
)

(30,30,0.4)

[–4]

6

9

(0,3,0.5)

(0
, 5

, 2
)

(1
0,

 1
5,

 3
)

