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Probability Models

To describe of the outcome of an uncertain event, we often speak of the probability of its
occurrence. Meteorologiststell us the probability of rain, electrical engineers predict the
reliability (or probability of success) of a computer system, quaity control technicians
measure the probability of a defect in amanufacturing process, gamblers estimate their
chances (or probability) of winning, doctorstell their patients the risk (or probability of
failure) of amedical procedure, and economiststry to forecast the likelihood of arecession.
For many, risk and uncertainty are unpleasant aspects of daily life; while for others, they
are the essence of adventure. To the analyst it isthe inescapable result of amost every
activity.

In the first part of the book, we mostly neglect the effects of uncertainty and risk
and assume that the results of our decisions are predictable and deterministic. This
abstraction allows large and complex problems to be modeled and solved using the
powerful methods of mathematical programming. In the remainder of the book, we
examine models that explicitly include some aspects of uncertainty, and describe analytic
techniques for dealing with decision problemsin this environment.

In this chapter, we establish the language of probability that is used to model
situations whose outcomes cannot be predicted with certainty. In important instances,
reasonable assumptions allow single random variables to be described using one of the
named discrete or continuous random variables. The chapter summarizes the formulas for
obtaining probabilities and moments for the distributions.  When combinations of several
random variables affect the outcome, simulation is often used to learn about a system.
Here we provide an introduction to the subject.

21.1 Variability, Uncertainty and Complexity

If we observe the price of a security on the stock market from hour to hour, the time it takes
aworker to perform some operation, the number of calories a person consumes at breakfast
each day, the number of telephone calls arriving at areceptionist's desk, or the interest rate
on government bonds we see that these quantities are variable. They change over time.
Moreover, the change is uncertain or random. In other cases, the quantity of interest may
change with time but in aknown or predictable way. Thiswould be true for a printed
circuit board assembly shop where the output was a function of the product being

assembly. In genera, variability complicates the problems of planning and decision
making, and often reduces the effectiveness of the systems we design.

Variability isthe source of many of our difficulties so decision making would be
much simpler if exact values of the variable quantities could be predicted with some degree
of accuracy. Unfortunately, variability in the future is almost always associated with
uncertainty. We are backward looking beings. We can measure the variability of the past
by taking data and analyzing it using the methods of statistics. Statistics tell uswhat did
happen. As designers and planners, operations research professionals are concerned about
answering the questions: what will happen and what should be done about it? In cases
where the dual problems of variability and uncertainty are present, the deterministic
methods of thefirst part of this book are usually insufficient.
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Even if there is both variability and uncertainty, we can sometimes deal with a
problem if itis“simple.” Most often, however, the real world is characterized by
complexity. For example, the production planner is faced by multiple sources of variability
and uncertainty. Not only is future demand unknown, but also the availability and lead
times for raw materials, the production times for the sequential stations of the
manufacturing process, the possibility of machine failures, the availability of the work
force, and many other factors relating to marketing and sales. 1n acomplex system,
variable quantities often interact in unexpected ways. In the face of such randomness, itis
surprising that those charged with decision making are at all successful.

This section begins the study of the characteristics of variability, uncertainty and
complexity. We will find that the models available are much more limited than those we
have described for deterministic systems. While in many cases deterministic models can be
mathematically solved to obtain optimal solutions for decision variables, thisistrue for
only very simple models that explicitly consider uncertainty. For more complex models,
the methods for dealing with variability and uncertainty provide the analyst with
information that is useful in many contexts. Optimization, however, is usually
accomplished by trial and error.

Variability

To illustrate variabil -
ity, consider ama-
chine station imple-
— P > menting some opera-
tion in amanufactur-
Queue ing process as shown

- : : - intheFig. 1. There
Figure 1. Machine station with queue are three machines,
each capable of proc-
ng the product that queues up on the left. After the necessary operations
are performed, the product leavesto the right for subsequent processing at
another station or delivery to afinished goods inventory.

There are many reasons for variability in both the arrival of itemsto
the station and the time to perform the operation. Perhapsthe rate of arrival
to the workstation is affected by customer orders. Occasionally, the
demand rate be high, while at other timesit may be low. The customersare
probably acting independently, so the time between adjacent orders are
extremely variable. Even if the customer demand is constant or effectively
buffered by afinished goods inventory, there are many sources of
variability within the production system. Scheduling of several products
through a shop typically resultsin variationsin the arrival pattern at a
particular machine. Theremoval of defectsin aproduction line causes
randomness in arrivalsto stations downstream from the point of removal.
Machine failures cause periods of downtime for components of the system
resulting in disruptions and variability in product flow.

The processing time is aso asource of variability. Itemsof a
product may not be exactly alike, requiring more or less processing at a
particular operation. Human activitiesintroduce significant variability in
operation times. Even arobot may require severa tries at performing its
activity, leading to variability. A particular machine may be required to
manufacture different items, introducing variability through different
processing requirements.
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Uncertainty

One effect of arrival and processing variability isthe formation of a
gueue of itemswaiting for service. Even if the machines have sufficient
capacity to satisfy the average rate of input, a queue eventually appears at
the workstation. The queue will vary in length over time, sometimes
growing, sometimes shrinking and sometimes disappearing. If the queue
and its effects are important to the design, operation and evaluation of the
system, we must provide ways to measure and model variability. A
deterministic model using average values for the arrival and processing rates
does not indicate that a queue will exist, much less provide estimates of its
characteristics.

We should note that the queue will form even if we know all about
the variability. If given the number of itemsin the queue at the start of some
observation period, atable of arrival times for products and a second table
of processing times for each item, we can predict quite accurately how the
length of queue will vary over time.

The queue isthe result of variability, not uncertainty. It istrue that
we could propose aplan to handle the variability if we had prior knowledge
of the variable quantities. This planning problem is often difficult, but it can
be approached with the optimization methods in the first part of this book.

It isthe combined effects of variability and uncertainty that makes planning
difficult and suggests the methods in the latter chapters.

We can observe the variability of the past but it isimpossible to predict with
100 percent accuracy the variability of the future. Even so, all of us must
make decisions in the face of thisuncertainty. The stock investor plotsthe
market price of aparticular stock in the hope that an investment now will
yield a profit in the future; the production planner purchases raw materials
and initiates a production process with the idea of fulfilling future demand;
parents buy insurance to protect their family against catastrophic events; the
government spends huge amounts of money on water storage facilitiesto
protect against the variability in future rainfall; and the gambler lays down a
bet that the next card will be the one he wants. Although, we cannot know
the future, we must respond to its possibilities. We need methods for
dealing with uncertainty.

It isjust about impossible to enumerate the aspects of a particular
situation that we might not know with certainty. One could easily argue that
we know nothing with certainty about the future. To propose a model we
will abstract reality by supposing that some aspects are known while others
arenot. By doing so, we are able to construct the models and methods
presented in the second part of the book.

Thefirst issue that we must come to grips with is whether an
uncertain quantity is entirely unknown or can be assigned a probability
distribution. Thisisan important distinction because most of the methods
associated with models of random systems assume that one can specify a
probability distribution for unknown quantities. For example, a card player
may be interested in the probability of drawing an ace from adeck of cards.
If, she knows that cards come from a standard bridge deck (4 acesin 52
cards) and that the cards are thoroughly mixed, she can logically say that the
probability of an aceis4/52 or 1/13. Most people understand the idea of
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Complexity

"chance" and feel comfortable with this definition of probability. Another
way of saying thisisthat if the player performed the experiment of drawing
acard over and over again, the expected number of aces would be 1/13 of
the total number of experiments. Any person that tries this experiment will
not observe 1/13 of the cards to be aces, but that should not be a concern.
When events are governed by chance, one expects variability in the results
of experiments.

The information about probability can be quite useful. Perhapsthe
player is about to place a bet on the result of the next draw. Although she
cannot know the result with certainty, knowing the probability of drawing
an ace will affect the odds she will require for the bet.

The situation would be quite changed if the player did not know
about the number of aces or the total number of cardsin the deck, or
suspected that the person mixing the deck could manipulate the order of the
cards or the card selected. Here both the identity of the next card and the
probability that the next card is an ace are unknown. Any decisions based
on this situation are clearly different than the case with known probabilities.
The subject of game theory provides techniques that deal with limited cases
of thistype.

In more formal discussions, the phrase decision making under risk
is used to describe situations where probabilities are assumed known, and
decision making under uncertainty is used to describe situations where we
do not know probabilities. In the text, we concentrate on problems
involving probability; however, we use the more comfortable term
uncertainty to describe them.

When the situation is very simple and probability distributions for uncertain
variables are assumed known, simple mathematical models can be
described. Some examples are observed in the study of inventory systems.
Here the expected cost of operating the inventory system is expressed asa
nonlinear function of its parameters. The methods of nonlinear
programming can be used to determine the optimal parameter values.

Simple queueing system models in Chapter 16 are manipulated to
yield closed form expressions for such quantities as the expected length and
expected timein the queue. Given cost information regarding the system, a
discrete search procedure is used in the section on Markov queueing
systemsto find the optimal design characteristics.

Only adlight increase in system complexity, however, makes
analytical results difficult to obtain. In most cases, the task of computing
the response of the system to a single setting of parametersis so difficult
that we concentrate on this analysis problem. In Chapters 12 through most
of 17 we are satisfied to compute the probabilities for the states of stochastic
processes. The goal of finding closed form or algorithmic approaches to
optimal solutionsis beyond our capabilities.

When a situation involving the interactions of several random
variablesis considered, analytical approaches usualy fail to give
information about the system response. Simulation, discussed in this
chapter, may be necessary. Here arun of asimulation providesasingle
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observation of the system response. When the response is arandom
variable, it is necessary to run the simulation many times to find good
estimates of the expected values. Optimization isreduced to trial and error,
avery expensive computational procedure for complex systems.

Decision Making

There is no question that decision making in the face of variability, uncer-
tainty and complexity isan important topic. It isone of our prime activities,
arising in every field of purposeful work and in most of the games that we
invent for our amusement.

In the second part of the book, we introduce various special cases of
problems that are amenable to quantitative analysis. We propose methods
for dealing with these models and arriving at solutions for the problems
stated. Because of the difficulty of dealing with uncertainty, these models
are far less complex and the solution methods are far less powerful than
those proposed for deterministic systems. We do not suggest that these
results handle all problems or solve unequivocally any real problem. We
believe, however, that the models and methods do yield insights and
guidance to experts and decision makers operating in this difficult area. The
formulation of an effective model, interpretation of the results of a
computational procedure and the implementation of a policy depend for
success on the experience of the analyst, or the team charged with the
analysis, and the person responsible for the decision.
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21.2 Examples of Random Outcomes

For problems in which randomness places arole, the decision maker acts but is unable to
predict with certainty the response of the system. A principal tool for quantitative modeling
and analysisin this context is probability theory. Even though a system responseis
uncertain, specifying the probability distribution over the various possible outcomes can
still be very useful to the decision making.

Example 1: The Game of Craps

Thisisyour first trip to Las Vegas and you are thinking about trying out the gaming tables.
As a student, you don’t have much money, so you're alittle afraid of diving right in.
After all, the minimum bet is $5, and it won't take many losses before your gambling
budget of $100 is exhausted. Y ou are looking forward to agood time but the uncertainty
and risk involved is unsettling.

The hotel has a specia channel on the television that helps you learn therules. Y ou
turn it on, and they are discussing the game of craps. In this game, the player rollsapair
of dice and sums the numbers showing. A sum of 7 or 11 winsfor the player, and a sum
of 2, 3or 12 loses. Any other number is called the point. The player then rollsthe dice
again. If sherollsthe point number she wins, if she throws a7 sheloses. Any other
number requires another roll. The game continues until the gambler rollsa 7 or her point.

Before going downstairs to the tables, you decide to do alittle analysis. Perhaps
that probability course you took in college will finally bear fruit. With alittle thought you
determine the probabilities of the possible outcomes of the roll of a pair of dice and con-
struct Table 1.

Table 1. Probabilities for athrow of two dice

Sum| 2 3 4 5 6 7 8 9 10 11 12

Probability | 1/36 2/36 3/36 4/36 5/36 6/36 5/36 4/36 3/36 2/36 1/36
Cumulative| 1/36 3/36 6/36 10/36 15/36 21/36 26/36 30/36 33/36 35/36 36/36

In technical terms, the activity associated with an uncertain outcomeisa
random experiment, a process that can be repeated and which has two or
more outcomes (sample points) that are affected by chance. A sample space
(S) isthe set of all possible outcomes of the experiment. For most random
experiments, the interest is not on the sample points but on some value de-
rived from the attribute being measured. Thistypically takes the form of an
observed or computed value known as arandomvariable. The realization
of arandom variableis arandom variate.

The current experiment isthrowing a pair of dice, the sample space
isall possible combinations of the two faces, and the random variable as de-
fined here is the sum of the numbersfacing up. Table 1, enumerating al
possible values of the random variable and their probabilities, congtitutes the
model of the game. Games of chance are interesting examples because logi-
cal arguments or repeated trials easily verify the probabilities describing the
model.

The table row labeled “sum” provides the possible observations of
the random variable. The sum isadiscreterandomvariable. The set of
possible valuesis
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X ={2,3,..,12}.

The row labeled probability shows the chance that a single throw resultsin
each of the various possible values of the random variable. The collection
of probabilitiesis probability distribution function (PDF) of the random
variable. Assign the notation P,(k) to represent the probability that the ran-
domvariable X takesonthevauek. Probabilitiesare always
nonnegative, and their sum over all possible values of the random variable
must be 1.

The cumulative distribution function (CDF) describes the probability
that the random variable isless than or equal to a specified value. The value
of the cumulative distribution functionat b is

Fe(b) = & R(K)

kEb
We drop the subscript x on both P, and F, when there is no loss of clarity.

The distributions for this situation are graphed in Fig. 2. The PDF.
hasthevalueO at x = 1, riseslinearly to apeak at x = 7, and falslinearly to
thevalue of O at x = 13. Thefunctionis called atriangular distribution.

The CDF shown in Fig. 2 hasthe typical pattern of al functions of this
type, starting at 0 and rising until it reaches the value of 1. The function
remainsat 1 for all values greater than 12. For the discrete random variable,
the PDF has nonzero values only at the integers, while the CDF is defined
for al real values.
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Figure 2. Distribution functions for total on dice (triangular distribution)

Computing Probabilities of Events

With the PDF in hand, you easily compute the probability that you will win or lose on the
first throw of the dice. Because the possible values are mutually exclusive, you simply add
the probabilities to find the probability of win or lose.

P(win) = P(7) + P(11) = 6/36 + 2/36 = 0.222

P(lose) = P(2) + P(3) + P(12) =1/36 + 2/36 +1/36 = 0.111
The odds look good, with the probability of awin equal to twice that of aloss. You confi-
dently head toward the tables. Unfortunately, the game does not go well, and you lose a

good deal of your stake. Perhaps your analysis stopped alittle early. We will continue this
example later to find a better estimate of your chances of winning this game.
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betweenaand b is

equals 1.

Anevent isasubset of the outcomes of an experiment. Event probabilities
are computed by summing over the values of the random variable that make
up the event. In the case of the dice, we identified the event of a“win” as
the outcomes 7 and 11. The probability of awin isthe sum of the
probabilities for these two values of the random variable.

In many cases events are expressed as ranges in the random
variable. In general, the probability that the discrete random variable falls

b b a1
Pl@Ex£Db)=a P (k) =a P(k) —a P«(k)
k=a k=0 k=0

= Fx(b) — Fx(a—1) for a£ b.

Range event probabilities are computed by summing over the values of the
random variable that make up the event or differencing the cumulative
distribution for the values defining the range.

For discrete random variables, the relation £ is different than the
relation < since a nonzero probability is assigned to a specific value.
Another useful expression comes from the fact that the total probability

P(x® a@=1-Fx(a—-1).

Toillustrate, several eventsfor the dice example appear in Table 2.
The random variable, x, is the sum of the two dice. The examples show
how different phrases are used to describe ranges. The values of the
cumulative distribution come from Table 1.

Table 2. Simplerange events

Event

Probability

Sumonthediceislessthan 7
Sum is between 3 and 10 inclusive
Sum ismorethan 7

Sumisat least 7

Sum isno more than 7

P(x < 7) = P(X £ 6) = F(6) = 15/36

P(3 £ X £ 10) = Fy(10) - Fy(2) = 32/36
P(x>7)=1-P(x £ 7) = 1— Fy(7) = 15/36
P(x® 7) = 1—Fy(6) = 21/36

P(x £ 7) = Fy(7) = 21/36

Combinations of Events

Based on the results of the first night’s play, you feel that you were alittle rash considering
only the probability of winning or losing on thefirst roll of the dice. In fact, most of your
loses occurred when didn’t roll awinning or losing number and were forced to roll for a
point. You must roll for apoint if thefirst roll is between 4 and 6 or between 8 and 10.

Y ou define the event A asthe outcomes{4 £ x £ 6} and the event B asthe outcomes{8 £
x £ 10}. Using therules of probability you determine that

P(A) = F(6) — F(3) = 15/36 — 3/36 = 1/3,
P(B) = F(10) — F(7) = 33/36 — 21/36 = 1/3.
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The probability that you must roll apoint isthe probability that either event A or event B

occurs. Thisisthe union of these two events (written A E B). Again from your
probability course you recall that since the events are mutually exclusive, the probability of
the union of these two eventsisthe sum of their probabilities.

P(throw apoint) =P(AEB) = 1/3+ 1/3=2/3.

Together win, lose and throw a point represent al possibilities of thefirst roll, so it is not
surprising that

P(win) + P(lose) + P(throw a point) = 0.222 + 0.111 + 0.667 = 1.

Events are sets of outcomes so we use set notation such as A and B to
identify them. The union istwo events, that isthe outcomesin either A or

B, iswritten AEB. Theintersection of two events, that is the set of out-
comesin both events A andB, iswritten ACB.

Rule 1: If A and B are mutually exclusive, P(AEB) = P(A) + P(B).

When two events are mutually exclusive they have no outcomesin
common, and the probability of their union is the sum of the two event
probabilities asillustrated above.

Rule 2: Probability of the union of any two eventsis
P(AEB) = P(A) + P(B) - P(ACB).

When the events are not mutually exclusive, we have the more genera

expression where P(ACB), is the probability that both events occur. For
example, let A ={roll lessthan 8} andB = {roll more than 6}. We
compute

P(A) = F(7) =21/36, P(B) =1 - F(6) = 1 — 15/36 = 21/36.
To compute the probability of the union, we must first find the probability

of the intersection event P(ACB) = P(7) = 6/36. Using the general
expression for the union we find

P(A) + P(B) — P(ACB) = 21/36 + 21/36 — 6/36 = 1.
Indeed the union of these two eventsincludes al possible outcomes.
Rule 3: The probabilities of the intersection of independent eventsis
P(ACB) = P(A) P(B).
Rule 4. The probability of the union of independent eventsis
P(AEB) = P(A) + P(B) —P(A) P(B).

Two events are independent if the occurrence of one does not affect
the probabilities associated with the other. As an example, we might be in-
terested in the probability that two sixes are thrown for a pair of dice. The
results of the two throws are independent, and we compute
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P({six on first} C{six on second}) = P(six on first)P(six on second)
= (1/6)(1/6) = 1/36.

When events are not independent, they are related by conditional
probabilities. Consider the events A ={roll a4 on thefirst play} and B =
{winthe game}. These events are not independent because the probability
of winning depends on whether or not we roll a4. We can, however,
define the conditional probability of winning given that a4 isrolled on the
first play, written P(B | A). To compute this probability, we assume we
have rolled a point of 4. On the second rall, the probability that we win,
given that the game endsis

P(roll a4) / [P(roll a4) +P(roll a7)] = 1/3.
Rule 5: Thegeneral expression for the intersection probability is
P(ACB) =P(A) P(B |A) .

We can't say how many rollsit will take, but this probability remains the
same throughout the remainder of the game, so we conclude that

Rule 6: For independent events, P(B |A) = P(B) and P(A |B) = P(A).

As a consequence, we have P(B | A) = P(win the game/ roll a4 on the first
play) = /3. Also, using the general formulafor computing the intersection
probability, gives

P(ACB) = (3/36)(1/3) = 1/36.

Y ou now have enough tools to complete the analysis of the game. Consider
an experiment that is a single complete play of the game. Y ou define the
following events:

W : Winthegame
L : Losethegame
W, : Throw apoint of k onthefirstroll, k = 4, 5, 6, 8, 9, 10.

The probabilities associated with the events are P(P,,) = 3/36, P(P.) = 4/36,
P(P¢) = 5/36, P(P;) = 5/36, P(P,) = 4/36, P(P,,) = 3/36.

The conditional probabilities, P(W [P,), of awin given a point of k on the
first roll are P(W |P,) = 1/3, P(W |P;) = 4/10, P(W |P,) = 5/11, P(W |Py)
=5/11, P(W |P ) = 4/10, P(W |P ) = 1/3.

The event of winning the game combines al possible winning combinations
of events.
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W =W, E (P,CW,) E (PCW) E (P.CW,) E (P,CWy)
E (PQ(;WQ) E (P10(;W10)
P(W) = P(W,) + P(P,) PW[P ) + P(P;) P(WIP ) + P(Pg) P(WIP )
+ P(Pg) P(WIP 5) + P(Pg) PW[P o) + P(P ) P(WIP )

= 0.493.
If you don’t win you lose, so P(L) =1—-P(W) = 0.507.

Y our odds of winning on any one play are slightly less than 50 - 50.
Y ou now know that the casino has a better chance of winning the game than
you do, so if you play long enough you will lose all your money. If this
were an economic decision, your best bet is not to play the game. If you do
decide to play, you go to the tables armed with the knowledge of your odds
of winning and losing. The probability model has changed the situation to
one of risk rather than uncertainty. Y ou can use the probability model to
answer many other questions about this game of chance.

Example 2: Two-Machine Workstation

Y ou are an machine operator and have recently been promoted to be in charge of two
identical machinesin a production line. You just received your first performance review
from your supervisor. Thereport isnot good and it ends with the comment,

“Your station fails in both efficiency and work-in-process. Y ou are inconsistent
inyour work habits. At timesyou sit idle and at other times the backlog is
overflowing from your station. A work study has determined that you have
sufficient capacity to process al the jobs assigned to you. It’'s hard to imagine
how you can fail to meet your schedules, have idle time and excess work-in-
process. If you don't improve, we'll have to reevaluate your promotion.”

Y ou throw down the review in anger, blaming the workstation that comes
before yours as not providing jobs on aregular basis. Y ou also blame the
mai ntenance department for not keeping your machinesin good shape.
They often require frequent adjustments and no two jobs take the same time.
Y ou aso complain about the production manager who takes work away
from you and givesit to another station whenever the number waiting
exceeds 6 jobs. After you cool down you pledge to yourself to try to
improve. You realy need this position and the extra pay it provides.

You visit theindustrial engineering department and ask for some
ideas to improve your efficiency. The engineer listensto your problem and
points out that perhaps the situation is not your fault. He explains that
variability in the arrival process and machine operation times can result in
both queues and idleness. Using data from the work study he determines
that you are assigned an average of 50 jobs per week and that each job takes
an average of 1.4 hoursfor atotal work load of 70 hours per week. With
two machines working 40 hours per week, you have a production capacity
of 80 hours, sufficient time to do the work assigned. Asafirst attempt at
modeling your station, the engineer uses a queueing analysist program and

1 Here we take these probabilities as given. Chapter16 provides formulas to compute them.
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finds the following probability distribution for the number of jobsthat are at
your station.
No. in system 0 1 2 3 4 5 6 7 8
Probability | 0.098 0.172 0.15 0.131 0.115 0.101 0.088 0.077 0.067
Cumulative | 0.098 0.27 042 0552 0.667 0.767 0855 0933 1.0

The table does give someinteresting insights. The model predicts
that you are idle amost 10% of the time (when the number in the system is
0). About 7% of the jobs entering the station will find all six queue
positions full (when the number in the system is 8). Since these jobs are
sent to another operator, the number of jobs actually processed in your
station is 50(1 — 0.067) = 46.63. Between three and four jobs per week are
taken away from you because of congestion at your station. The remaining

jobs require an average of 46.63 "~ 1.4 = 65.3 hours per week. Since your

machines have 80 hours of capacity, their efficiency is65.3/80 = 82%. The
work-in-process (WIP) is the expected number of jobsin the station. Using
probability theory you cal cul ate the expected value for the number of jobs as

8
w = & kR (k) = 0(0.098) + 1(0.172) + 2(0.15) + --- + 8(0.067) = 3.438.
k=0

Y ou are not very encouraged by these results. They clearly support
your supervisor’s opinion that you are simultaneoudly inefficient, lazy, and
generally not doing your job. The kindly engineer consoles you that the
results are the inevitable cause of variability. Y ou can do nothing about the
situation unless you can reduce the variability of job arrivals to your station,
the variability of the processing times, or both. If these factors are beyond
your control, you better try to convince your supervisor that the problem is
not your fault and that he should look elsewhere for solutions.

Both the gambling and manufacturing examples illustrate how
probability models can be used to provide insight about a current situation.
The gambling example illustrates a case where the underlying causes of
variability are well known and the analysis yields accurate estimates about
the probabilities of winning and losing. The moddl for the manufacturing
exampl e rests on arguable assumptions so the results may not be accurate.
The mode isvaluable however, in that it illustrates an aspect of the situation
often not apparent to decision makers. The analysis shows that the inherent
randomness in the processis the source of the difficulty, and should
stimulate the search for new solutions.
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21.3 Discrete Random Variables

Results of an experiment involving uncertainty are described by one or more random
variables. This section considers the discrete random variable, while the continuous case is
the subject of the next section. Here the probability distribution is specified by a nonzero
probability assigned to each possible value of the random variable.

For a particular decision situation, the analyst must assign a distribution to each
random variable. One method isto perform repeated replications of the experiment.
Statistical analysis can then be used to estimate the probability of each possible occurrence.
Another and often more practical method is to identify the distribution to be one of the
named distributions. It is much easier to estimate the parameters of such a distribution,
rather than to estimate the entire set of probabilities. A catalog of some of the important
named distributions and examples of their useis provided below

Also presented are formulas for the moments and probabilities for the general
discrete distribution as well as for the more prominent named distributions. Fortunately,
when working with real problems, it is not always necessary to know the formulas or even
how to use them. Computer programs are readily available to do the analysis for given
parameter values?. The formulas, however, provide a higher level of knowledge regarding
the distributions and are frequently very helpful for estimating parameters.

Describing Probability Distributions

" A discrete prob-
6/36 ability distribution
function is com-
" pletely described
4136 by the set of pos-
3136 sible valuesthe
random variable
2% can take and by
1/36 the probabilities
assigned to each
° x point in the sample
1 2 3 4 5 6 7 8 9 10 11 12 Spme The nota-
Figure 3. Distribution functions for total on dice tion P, (k) for k =

0, 1,..., indicates
that the random
variable takes on the value of any nonnegative integer. Providing values of
P, (k) for each k completely specifiesthe distribution. The triangular distri-
bution of Fig. 3isused asan illustration.

Certain quantities can be computed from the PDF that describe
simple characteristics of the distribution. These are called moments. The
most common is the mean, W, the first moment about the origin. We give
the general definition for the mean along with its computation for the
triangular distributionin Table 3. This and following definitions assume
that the random variable is defined over all nonnegative integers. The
definitions can be easily expanded to cover other domains. The mean

(Triangular Distribution)

2 The Probability Add-in alows the user to define random variables and assign them named distributions.
Functions are available to compute moments and probabilities. Random variables may be simulated to
model more complex situations.
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provides a measure of the center of the distribution. For a symmetric
distribution, the mean is the middle value of the range of the random
variable. Another term often used for the mean is the expected value of X,
written E[ X].

Table 3. Descriptive measures of distributions

Measure Genera formula Sum of the dice
¥ _
_ 2 u = 2(1/36) +3(2/36) +--- +
Mean = ki‘okPX(k) 12(1/36) = 7
¥ 2 = 2 2
. 2_ o 2 02 = (2—-7)4(1/36) +(3 —7)4(2/36)
= ak- Py (k
Variance © k"io( )™ Px(k) + -+ + (12 -7)2(U/36) = 5.833
Standard deviation = \/;2 o =1/5.833 = 2.415
2 _
Skewness B = _(rrgf)s P1=0
o)
¥
us =a (k- w’R (K
k=0
_ My =
Kurtosis B2 = 54 P2 =2.365
¥
u, =a (k- wW'R(K
k=0

The variance, %, is a measure of thespread of the distribution about
the mean. It isthe second moment about the mean. Where the random
variable has high probabilities near the mean, the varianceis small, while
large probabilities away from the mean imply that the varianceislarge. The

standard deviation, o, is sSimply the positive square root of the variance and
also describes the spread of the distribution. Discussions more often use
the standard deviation because it has the same dimension as the mean.

Two additional measures that describe features of adistribution are

the skewness and kurtosis with general measures 3, and 3, givenin Table
3. A positive skewness indicates that the distribution is concentrated to the
with along thin tail pointing to the right, and a negative skewness has the
concentration to the right and the tail pointed to the left. Kurtosis measures
the peakedness of the distribution. We illustrate the skewness measure in
the several examples of this section. The examplein Fig. 3 has a skewness
of 0 because the distribution is symmetric.
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Named Discrete Distributions

It isuseful for modeling purposes to know about the named discrete
distributions. When an experiment on which arandom variable is based
satisfies the logical conditions associated with a named distribution, the
distribution for the random variable isimmediately determined. Thenwe
can use the distribution without extensive experimentation to answer
decision questions about the situation.

Bernoulli Distribution

Example 3: Consider again the Craps game. If on thefirst roll of the dice you throw a
number other than 2, 3, 7, 11, or 12, the number you do throw is your point. The rules say
you must roll the dice again and continue to roll until you throw your point and win, or a7,
and lose. Say your pointis4. Based on your probability model you determine that on any
givenroll following the first:

P(win) = P(x = 4) = 3/36.

P(lose) = P(x = 7) = 6/36.

P(roll again) = 1 —P(win) — P(lose) = 27/36 = 3/4.
For each roll, the game either terminates with probability 1/4, or you must roll again with
probability 3/4.

Bernoulli Distribution An experiment that has two outcomesis
Parameter: O<p<1 caled aBernoulli trial. For the example we
P(l)=p andP(0)=1—-p Eake the two outcomes as “ roll again” and
R terminate”, and arbitrarily assign the value
n=p, o°=pl-p) 0 to the roll again outcome and value 1 to
the terminate outcome. The parameter asso-

ciated with the probability distribution is the probability that the variable as-
sumesthe value 1 indicated by p. Given the value of p, the entire distribu-
tionis specified. For the example

P(terminate) = P(1) = 1/4 and P(roll again) = P(0) = 3/4.

The simple Bernoulli distribution illustrated with this exampleisthe
first of several named distributions presented in this chapter. These distri-
butions are useful because they model avariety of situations.

Geometric Distribution

Example 4: If you don't win or lose on thefirst roll, you might wonder how long the
game will last. Assume you roll apoint of 4. Now you begin the second phase of the
game and define the random variable as the number of rolls prior to thelast roll. That
number may be 0, 1, 2,... which israndom variable described by the geometric distribu-
tion.

This random variable has an infinity of possible valuesin that thereisno
upper limit to the number of rolls conceivably required. Thereis only one
way a particular value, k, of the random variable can occur. There must be
k roll again outcomes followed by one termination. The probability of this
occurrence describes the probability distribution function.
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The geometric

Geometric Distribution distribution has the single
Parameter: 0<p<1 parameter p, with the re-
= —p) = quirement that (0< p <
P(k) p(11 p)'¢ fork ) 0.12.. 1). The logical condition
u==—P p==P for this distribution is that
p p’ the separate trials be in-

dependent, that is, the
outcome of onetrial does not affect the probability of alater trial. Thisis
certainly true for sequential throws of the dice.

For the example the parameter isp = P(terminate) = 1/4. Table4
shows the probability distribution for this case, and Fig. 4 showsaplot of
the distribution. The game may take quite afew rollsto complete with a
greater than 10% chance that more than 7 are required. The moments for
the example are:

U= 3 02= 12 o = 3.46, B, = 4.08, B, = 9.08
The positive skewness is clearly indicated in the plot.

Table4. Geometric distribution

Number, k C 1 z < 4 < € 7

Probability 025 0188 0.141 0.105 0.079 0.058 0.044 0.033
Cumulative| 0.25 0438 0578 0.684 0.763 0.822 0.867 0.9

0.25

0.2

0.1

0.05

B f(Num_Trials)

0o 1 2 3 4 5 6 7 8 9 10

Figure 4. Plot of the geometric distribution

Using this probability moddl, it is easy to compute the mean and
variance of the number of rollsto termination for each of the point numbers
as given below.
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Point 4 5 6 8 9 10
p 025 0278 0306 0306 0.278 0.25
M 3 26 2273 2273 26 3
g2 12 936 7438 7438 9.36 12

Negative Binomial Distribution

Example 5: Inthe game of craps, you decide to play until you lose 5 games. Y ou won-
der how many games you will play with thistermination rule. Recall that the probability of
losing any one game is 0.5071. The games are a series of independent Bernoulli trials, and
the random variable is the number of wins until thefifth loss. Thisis a situation described
by the negative binomial distribution.

Negative Binomial Distribution For this distribution we first identify
Parameters; 0<p< 1, the resgellt O(]:I esfucggss In thiscas?, we
3 i perversely defined success asa“loss’
r* Landinteger with p the probability of a success
_getk-lg K equal to 0.5071 for the example. The
Px(K) = p'(1-p) iblei -
e r-1g random variable is the number of trials
_ that result in O beforether th 1 isob-
fork=0,1,2.. served. For thiscase, r = 5.
w= u o’ = r(l_zp) The distribution for the exam-
Y p pleisshowninthe Table5. Itisim-

portant to remember that the random
variableis not the total number of trials but the number of failed trials before
the rth success. In Table 5, the entry for O describes the probability that the
first five plays were losses and there were no wins. The geometric distri-
bution isaspecial casewhenr = 1.

Table 5. Negative binomia distribution

Number, k 0 1 2 3 4 5 6 7
Probability| 0.034 0.083 0.122 0.141 0.139 0.123 0.101 0.078
Cumulative| 0.034 0.116 0.238 0.379 0517 064 0.741 0.82

Binomial Distribution

Example 6: Therdiability of acomputer is defined as the probability of successful
operation throughout a particular mission. A study determinesthat the reliability for a
given mission as 0.9. Because the mission isvery important and computer failureis
extremely serious, we provide five identical computers for thismission. The computers
operate independently and the failure or success of one does not affect the probability of
failure or success of the others. Our job isto compute the probability of mission success,
or system reliability, under the following three operating rules:

a. All five computers must work for mission success
b. At least three out of five must work for mission success
c. At least one computer must work for mission success
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Consider an experiment that involves n independent Bernoulli trials. Asso-
ciate with each outcome, the random variable that is the sum of the of then

Parameters: 0<p < 1, n3 1and integer
Py (k) = 8 B K (1- p)™% fork = 0,1,2,...n

Binomial Distribution

g{|8_(n_ k)l k!
1 =np, 6 =np(1-p)

Bernoulli ran-
dom variables.
Thisiscalled
the binomia
random vari-
able. Thevari-
able hasn+1
possible values
ranging from O
ton. ItsPDF

isthe binomial_distribution which has two parameters, p and n.

In the case given, the success or failure of each computer isa
Bernoulli random variable with 1 representing success and O representing
failure. The probability of successisp, and we assume that the computers

are independent with respect to failure.

The number of working computers, X, is the random variable of
interest, and the binomial distribution, with parametersn=5and p=10.9, is
the appropriate PDF. With these parameters the probability of k successful
computersis computed and the results are shown in the table. The moments

of the distribution are:

W= 45 062= 045 6= 0.67, B, =-1.42, B, = 4.02

The negative skewnessisillustrated in the Fig. 5.

Number, k 0 1 2 3

5

Probability | 0.00001 0.00045 0.0081 0.0729 0.32805 0.59049

Cumulative | 0.00001 0.00046 0.00856 0.08146 0.40951 1
° 0 1 2 3 4 5

Figure 5. Plot of the binomial distribution
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earlier are

Poisson Distribution

The probabilities of mission success under the three conditions listed

a. P(x =5) = 0.59049.

b. P(x3 3) =P(3) + P(4) + P(5) = 0.99144.

c. P(x3 1) =1-P(0) =0.99999.
These results show the value of redundancy for increasing reliability. In
case a, none of the computersis redundant since all are required for suc-
cessful operation. In case b, we say that two computers are redundant since

only three arerequired. In casec, four are redundant. Therdliability of the
system obvioudly increases as redundancy is increased.

Example 7: A traffic engineer isinterested in the traffic intensity at aparticular street
corner during the 1 —2 am. time period. Using amechanical counting device, the number
of vehicles passing the corner is recorded during the one hour interval for several days of
the week. Although the numbers observed are highly variable, the average is 50 vehicles.
The engineer wants a probability model to answer avariety of questions regarding the traf-

fic.

Poisson Distribution
Parameter: 6 >0
ee(g)k
Px(k)= —r— fork3 0

n=0,06"=90

tion.

This situation fits the logical requirements of
the Poisson Distribution. Consider arrivals
that occur randomly but independently in
time. Let the average arrival rate be equal to

A per unit of time and |et the time interval be
t. Then one would expect the number of arri-

valsduring theinterval to be 6 = At. The actual number of arrivals occur-
ring inthe interval is arandom variable governed by the Poisson distribu-

The parameter of the distribution is the dimensionless quantity 6,
which isthe mean number of arrivalsin the interval. We call an arrival
process that givesriseto thiskind of distribution a Poisson process The
distribution is very important in queueing theory and is discussed more fully
in Chapter 16.

To use the distribution for the example, we must only assume that
vehicles arrive independently and that the average arrival rate is constant.
This does not mean that the vehicles passin a steady stream with afixed

interval between cars. Rather, with the assumption of randomness, vehicle
arrivals are extremely variable; the rate of 50 per hour isan average. Using
the distribution, we can model the probabilities for any interval of time,
however consider aone minute period. The random variable is the number
of vehicles passing during the one minute period. The parameter of the
distributionis

6 = (50/hour) (1/60 hour) = 5/6 = 0.833.

The probability distribution for this example is computed with the formulas
given for the Poisson distribution and shown in Table 6. Descriptive
measures are
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M= 0.833,62=0.833,6 = 0.913,3,=1.2,B,=4.2
The mean and variance of the Poisson distribution are aways equal.

Table 6. The Poisson Distribution with 6 = 0.833

Number, k 0 1 2 3 4 5
Probability | 0.4346 0.3622 0.1509 0.0419 0.0087 0.0015
Cumulative| 0.4346 0.7968 0.9477 0.9896 0.9983 0.9998

Hypergeometric Distribution

From the distribution, various probability statements can be made.
» P(no cars pass the corner) = P(0) = 0.4346

e P(at least two cars pass) = P(2) + P(3) + ---

This expression can be evaluated if enough terms are added together how-
ever an easier, more accurate way is

» P(at least two cars pass) = 1 — P(no more than one car passes)
=1-P(0)-P(1)=1-F(1) =1-0.7968 = 0.2032

Example 8. You are dedt ahand of 5 cards from a standard deck of 52 cards. Before
looking at the hand you wonder about the number of aces among thefive cards. Thisisa

case for the hypergeometric distribution.

Hypergeometric Distribution

Parameters. N, a, n
all positive and integer
atEN, nEN
o)
ekeen- kg
T for k = 0,1,..,n
0

eng

P(K) =

_nha , ampaN-apalN-ng
u=—, o6°=n — —— ——

N ENgGEe N ZEeN- 12

The situation involves N
items. aof theitemsare as-
signed thelabel 1and N —a
are assigned the label 0. Se-
lect at random n items from
the N available without re-
placement. The number of
itemslabeled 1 isthe random
variable of interest. For the
example, thereisafixed
number from which to draw
(N =52 cards), the number of
acesin the deck (a= 4 aces)
and the sampleis5 cards (n =
5).

P(K) isthe probability that k of the items selected have the label 1.
There arethree parametersa, N and n. All parametersareintegers. O£ a£
N. 1 £ n£ N. A combination expression is zero if the bottom number is
greater than the top number. The probability distribution for the number of

acesisin Table 7.
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Table 7. Hypergeometric distributionwith N =52, n=5,a=4

Number, k 0 1 2 3 4 5
Probability | 0.6588 0.2995 0.0399 0.0017 0.00001 0
Cumulative| 0.6588 0.9583 0.9982 1 1 1

Triangular Distribution

Example 9: A computer is shipped with a multiple number of some part. A company
that assembles computersisinterested in the distribution of the number of parts required.
No statistics are available, however, design of the computer assures that every computer
requires at least 1 part and the most that can be installed is six parts. A production supervi-
sor estimates that most computers require two parts. The only information we haveisthe
range of the random variable and its mode (the most likely number). A reasonable estimate
for the distribution of partsisthe triangular distribution.

Triangular Distribution In general, identify aasthe
Parameters. a b, mall integer lower limit to the range, b as
afmeEb the upper limit, and m as the

- _ mode. Construct the distribu-

P(k) = Ci(k a+l)jforat k£m, tion with the constantsd and e
andP(k) =eb-k +1)formE£KED that satisfy the requirements:

Use the genera formulas to compute moments

b
4 P(K) =landd(m—a+1) = eb—m+ 1).
k=a

For the example situation, d = 0.143 and e = 0.057, and the distribution is
presented in Table 8.

Table 8. Triangular distributionwitha=1,b=6, m=2

Number, k 1 2 3 4 5 6
Probability | 0.143 0.286 0.229 0.171 0.114 0.057
Cumulative | 0.143 0.429 0.657 0.829 0.943 1

Uniform Distribution

Example 10: We continue the example used for the triangular distribution, but now as-
sume the production manager has no idea how many parts will be used in a computer. He
knows only that the design limits the range of the random variable between 1 and 6. In this
situation of complete uncertainty, the uniform distribution might be used.
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Uniform Distribution This distribution assigns
Parameters: a, b all integer equal probabilitiesto all pos-
Pk)=U-a+1)forafkEDb sible values of the random
a+b variable within the range ato
H=— b, inclusive. For the example
2 situation: P(k) = 1/6 for 1 £ k
Use general formulafor 62 £6.

Modeling

When attempting to use the results of this section to model a problem, the
first stepisto determineif the random variableisdiscrete. Whenever the
guestion concerns counting, only the integers are relevant so the variable is
obvioudy discrete. To assign a probability distribution to the random
variable, review the special casesto seeif any are appropriate. In Chapter
18, several goodness-of-fit tests are provided to aid this process.

If the experiment only has two outcomes, the Bernoulli random
variableisthe clear choice. If the experiment involves a sequence of
independent observations each with two outcomes, then the binomial,
geometric or negative binomia distributions may fit. A fixed number in the
sequence suggests the binomial, while a question related to the first
occurrence of one of the two outcomes suggests the geometric. The
negative binomial is a generalization of the geometric where the random
variable isthe number of unsuccessful trials before the rth success.

The binomia and hypergeometric are appropriate when we are
selecting afixed number of items from a population. The binomial models
the number of successes when the population isinfinite or when the
population isfinite and the items are replaced after each trial. When items
are not replaced the hypergeometric is the correct distribution.

The Poisson distribution is used when the question relates to
counting the number of occurrences of some event in an interval of time (or
some other measure). Key phrases that suggest the appropriateness of the
Poisson are that the arrivals are "independent™ or "random”.

Triangular and uniform distributions are often used when very little
is known concerning the situation. The uniform requires only the range,
while the triangular needs the additional knowledge of the mode. The
distributions may also be logical consequences of the features of an
experiment. For example, the uniform distribution models the number on
the face of asingle die, while the triangular models the sum of two dice.

If any of the special cases can logically be applied, then the
parameters of the distribution must be determined. In practice, they may be
determined by the logic of a situation or by estimation using statistics from
historical data. If none of the special casesfit, the random variable till has
aprobability distribution; however, some other rational must be used to
assign probabilities to possible outcomes.

21.4 Continuous Random Variables
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A continuous random variable is one that is measured on a continuous scale. Examples are
measurements of time, distance and other phenomenathat can be determined with arbitrary
accuracy. This section reviews the general concepts of probability density functions and

presents avariety of named distributions often used to model continuous random variables.

Probability Distributions

Computing Probabilities
b
P@@EX £b)=¢ fy(y) dy
a

The probability density function (pdf)
isafunction, f,(y), which defines the
probability density for each value of a
continuous random variable. In-
tegrating the probability density func-
tion between any two values givesthe

probability that the random variable falls in the range of integration.

The meaning of pdf is different for discrete and continuous random
variables. For discrete variables PDF isthe probability distribution function
and it provides the actual probabilities of the values associated with the dis-

Triangular Digtribution
Parameter: O£ c£ 1

%( for O£ xX£c

I
I
I
f o
f(x) = 12 %) forc< x£1
: 1-¢

I

T 0 elsewhere

1+c
w=-3

,_1-2c+2c2-c8
C°=""18(1 -0

crete random variable. For continuous
variables, pdf is the probability density
function, and probabilities are deter-
mined by integrating this function. The
probability of any specific value of the
random variable is zero.

The example for thisintroduc-
tory section isthe triangular distribution
illustrated in Fig. 6. The functional
form for this density has asingle pa-
rameter ¢ that determines the location of
the highest point, or mode, of the func-
tion. The random variable ranges from
Oto 1. No values of the random vari-
able can be observed outside this range
where the density function has the value
0.
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Figure 6. Triangular distribution withc = 0.3

Cumulative Distribution Function

X
Fx() = P(X£x) = g fx(y) dy
¥
dFy(x)
fx(X) =—agx

sible, the pdf must remain

The cumulative distribu-
tion function (CDF), Fx(x), of

the random variable is the prob-
ability that the random variable
isless than or equal to the argu-
mentX. Thisisthe same asthe
probability that the random vari-
ableisgtrictly lessthan the ar-
gument x because the probability

that a continuous random variable takes on any particular value is zero; that
is, P(X =x) =0. Consequently, P(X £ x) = P(X <X).

The pdf isthe derivative of the CDF We drop the subscript on both
fy and Fx when thereis no loss of clarity. The CDF has the same meaning
for discrete and continuous random variables; however, values of the prob-
ability distribution function are summed for the discrete case while integra-
tion of the density function is required for the continuous case.

Asx goesto infinity, Fy(x) must goto 1. The area under alegiti-
mate pdf must therefore equal 1. Because negative probabilities are impos-

nonnegative for all x.

CDF of the Triangular Digtribution
i0 forx<O
i 2
-I-X— forOEXEcC

F) =1
- : X(2- x)c

: (1- ¢
lforx>1

forc<x£1l

Integrating the den-
sity function for the triangu-
lar distribution resultsin the
CDF aso shown in Fig. 6.
The exampleillustrates the
characteristics of every CDF.
It is zero for the values of x
below the lower limit of the
range. Within the range the
function increasesto the
valueof 1. Itremainsat 1
for al x values greater than
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the upper limit of the range. The CDF never decreases and remains constant
only when the pdf is zero.

b
Pla<X<b}=§

The probability that the
_ random variable falls between
fx(y) dy =F(b)-F(@d two given valuesis the integral
of the density function between

these two values. It doesn’t
matter whether the equalities are included in the probability statements, since
specific values of the random variable have zero probability.

Toillustrate, consider again arandom variable with the triangular
distribution with c equal to 0.3. Since we have the closed form representa-
tion of the CDF, probabilities are easily determined using the CDF rather
than by integration. For example,

P{O £ X £ 0.2} =F(0.2) — F(0) = 0.1333 — 0 = 0.1333,
P{0.2 < X < 0.5} =F(0.5) — F(0.2) = 0.6429 — 0.1333 = 0.5095,
P{X >05} =1—P{X £0.5} =1—-F(0.5) = 1— 0.6429 =0.3571.

Asfor discrete distributions, descriptive measures include the mean,
variance, standard deviation, skewness and kurtosis of continuous distribu-
tions. The genera definitions of these quantities are givenin Table 10. In
addition, we identify the mode of the distribution, that is the value of the
variable for which the density function hasits greatest probability, and the
median, the value of the variable that has the CDF equal to 0.5.
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Table 10. Descriptive measures
Triangular distribution
Measure Genera formula (c=0.3)
+¥ l1+c
Mean w =E[X]= Oxf(x)dx. u=—"3— =0433
-¥
,_ % ) ,_1-2c+2c2-¢3
Variance o4 = O(x- u)“ f(x)dx o< = 18(1 — 0 = 0.0439
-¥
Standard deviation o =\o? o = JO.0439 = 0.2095.
X 3
Skewness My = O(x- )~ f (x)dx
-¥
(19}
B, =
c
X 4
Kurtosis My = O(X- )~ f(x)ax
-¥
Mg
BZ (54

Named Continuous Distributions

Modelsinvolving random occurrences require the specification of a
probability distribution for each random variable. To aid in the selection, a
number of named distributions have been identified. We consider several in
this section that are particularly useful for modeling phenomenathat arisein
operations research studies.

Logical considerations may suggest appropriate choicesfor a
distribution. Obvioudly, atime variable cannot be negative, and perhaps
upper and lower bounds due to physical limitations may be identified. All
of the distributions described below are based on logical assumptions. If
one abstracts the system under study to obey the same assumptions, the
appropriate distribution is apparent. For example, the queueing analyst
determines that the customers of a telephone support line are independently
caling on the system. Thisis exactly the assumption that leads to the
exponentia distribution for time between arrivals. In another case, a
variable is determined to be the sum of independent random variables with
exponentia distributions. Thisis the assumption that leads to the Gamma
distribution. If the number of variablesin the sumis moderately large, the
normal distribution may be appropriate.

Very often, it is not necessary to determine the exact distribution for
astudy. Solutions may not be sensitive to distribution form as long as the
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mean and variance are approximately correct. The important requirement is
to represent explicitly the variability inherent in the situation.

In every case, the named distribution is specified by the
mathematical statement of the probability density function. Each has one or
more parameters that determine the shape and location of the distribution.
Cumulative distributions may be expressed as mathematical functions; or,
for cases when integration isimpossible, extensive tables are available for
evaluation of the CDF. The moments of the distributions have already been
derived, aiding the analyst in selecting one that reasonably represents his or
her situation.

Normal Distribution

Example 11: Consider the problem of scheduling an operating room. From past
experience we have observed that the expected time required for asingle operation is 2.5
hours with a standard deviation of 1 hour. We decide to schedule the time for an operation
so that there is a 90% chance that the operation will be finished in the alotted time. The
guestion is how much time to allow? We assume the time required is arandom variable
with anormal distribution.

f(x) =

1
oJ2n

2
exp{w} for-¥ <x<¥
20

Normal Distribution The probability density
Parameters: 1, 6 function of the normal

distribution has the familiar
"bell shape." It hastwo

parameters 1 and o, the mean
and standard deviation. The

Normal distribution has applications in many practical contexts. It isoften
used, with theoretical justification, asthe experimenta variability associated
with physical measurements. Many other distributions can be approximated
by the normal distribution using suitable parameters. This distribution
reachesits maximum value at |, and it is Symmetric about the mean, so the

mode and the median aso have thevalue u. Figure 7 plots the distribution
associated with the example.
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Figure 7. Normal distribution

It isimpossible to symbolically integrate the density function of a
Normal distribution, so thereis no closed form representation of the cumu-
lative distribution function. Probabilities are computed using tables that ap-
pear in many text books or using numerical methods implemented with
computer programs. Certain well known probabilities associated with the
normal distribution arein Table 11.

Table 11. Ranges of the normal distribution

Range Formula Probability

Within one standard
deviation of the mean Plu—oc £ X £ p+o) 0.6826

Within two standard .
deviations of themean | F(H20 £ X £ p+20) 0.9545

within three standard
deviations of the mean | F(H—30 £ X £p+30) 0.9973

Considering the example given at the beginning of this section, we
note that the assumption of normality cannot be entirely appropriate because
thereisafairly large probability that the timeislessthan zero. We compute

P(X £ 0) = 0.0062
Perhaps thisis a small enough value to be neglected.

The original requirement that we reserve the operating room such
that the reserved time will be sufficient 90% of the time, asks usto find a
valuez such that

P(X £2) =0.9.
For this purpose we identify the inverse probability function
F*(p) defined as
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z=F'(p) suchthat F(z) = P(x £ 2) = p.

For the normal distribution, we compute these values numerically using a
computer program. For the example,

z=F"0.9) = 3.782 hours.

ums of Independent Random Variables

Consider again the operating room problem. Now we will assign the operating room to a
single doctor for three consecutive operations. Each operation has a mean time of 2.5
hours and a standard deviation of 1 hour. The doctor is assigned the operating room for an
entire 8 hour day. What is the probability that the 8 hourswill be sufficient to complete the
three operations?

There are important results concerning the sum of independent random vari-
ables. Consider the sum of n independent random variables, each with

meanu and standard deviation G,

Y=X1+ X2+ -+ Xp.
Four results will be useful for many situations.
1. Y hasmean and variance

ty = nu and 63 = no?.

2. If the Xj individualy have normal distributions, Y will also have anor-
mal distribution.

3. If theX; haveidentical but not normal distributions, probabilities asso-
ciated with Y can be computed using anormal distribution with accept-
able approximation as n becomes large.

4. Themean vaue of the n random variablesis called the sample mean M
=Y/n. The mean and variance of the sample mean is

i, =u and of; = 62/n.

If the distribution of the X; are normal, the distribution of the sample
mean isaso normal. If the distribution of the X; are not Normal, the
distribution of the sample mean approaches the Normal as n becomes large.
Thisis called the central limit theorem.

Results 1 and 2 are true regardless of the distribution of the
individual X,. When the X, are not normally distributed, the accuracy of
results 3 and 4 depend on the size of n, and the shape of the distribution.

For the example, let X1, X2 and X 3 be the timesrequired for the
three operations. Since the operations are done sequentialy, the total time
theroomisinuseis, Y, where

Y =X1+X2+ Xa.

Since we approximated the time for the individual operation as normal, then
Y hasanormal distribution with

Hy =3p =7.5, 6\2( =302=3ando, = V30 =1.732.
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Therequired probability is
P{Y £ 8} =0.6136.

Thereisa61% chance that the three operations will be complete in eight
hours.

Lognormal Distribution

Example 12: Consider the material output from arock crushing machine.

M easurements have determined that the particles produced have a mean size of 2" with a
standard deviation of 1". We plan to use a screen with 1" holesto filter out all particles
smaller than 1". After shaking the screen repeatedly, what proportion of the particles will
be passed through the screen? For analysis purposes we assume, the size of particles has
aLognormal distribution.

Lognormal Distribution T
Thelognormal distribution
Parameters: o, , 3 exhibits avariety of shapes
PRy asillustrated in Fig. 8.
f(x) = _1 exp{ M} forx>0 Therandom variableisre-
Bv2n 2B stricted to positive values.
_ Depending on the parame-
W =exp (o + B 2/2) ters, the distribution rapidly
2= 20 +B2 2)_1 rises to its mode, and then
o =epza +pelep( -1 declines slowly to become
Xmode = exp[o. —B]. asymptotic to zero.
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Figure 8. Lognormal Distribution

Thelognormal and the normal distributions are closely related as
shownin Fig. 9. When some random variable X has alognormal distribu-
tion, the variable Z has anormal distribution when

Z = In(X).
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Alternatively, when the random variable Z has a Normal distribution, the
random variable X has a Lognormal distribution when

X =exp(2).
Random variable Z Random variable X
with normal distribution; with lognormal distribution;
mean |1, and variance 65 mean 1, and variance 6%
0.7¢
0.6¢
05%¢
041
03%¢
024
0.1
OO (:l < © © - (:l < © 0 N
s 2 1 o 1 2 3
Uz =0and cs% = 1 for the case shown Hx =1.6487 and oy = 4.6708
Z =In(X) X = exp(2)

Figure9. Relation between normal and lognormal distributions

The lognormal has two parameters that are the moments of the re-
lated normal distribution.

o=Hzand = oz

The formulafor the pdf of the lognormal distribution is given in terms of o

and 3. Thisexpression is useful for plotting the pdf, but not for computing
probabilities since it cannot be integrated in closed form. The parameters of
the three cases given in Fig. 8 are shown in the Table 12.

Table 12. Distribution Parameters for Fig. 8

Case | o=lz P =0z Hx Ox Xmode
C1 1 1 4.48 5.87 1
Cc2 15 1 7.39 9.69 1.65
C3 2 1 12.18 1597 272

For some cases, one might be given the mean and variance of the
random variable X and would like to find the corresponding parameters of

the distribution. Solving for oo and B in terms of the parameters of the
distribution underlying normal gives

B2=In[(02 /u2) + 1] and o = In[uy] —B2/ 2.
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Thelognormal isaflexible distribution for modeling random vari-
ablesthat can assume only nonnegative values. Any positive mean and
variance can be obtained by selecting appropriate parameters.

For the example described at the beginning of this section, the given
data provides estimates of the parameters of the distribution of X,

UXZZandGX:]_.

From this information, we compute the values of the parameters of the
lognormal distribution.

B2=0.22310r B =0.4723, and o0 = 0.6683.
P{X £ 1} = 0.0786.
Approximately 8% of the particles will pass through the screen.

Exponential Distribution

Example 13. Telephone calls arrive at a switch board every 30 seconds on average.
Because each isinitiated independently, they arrive at random. We would like to know the
probability that the time between one call and the next is greater than 1 minute?

f(x) = A exp(-Ax) forx>0
F(X) =1- exp(—Ax) forx >0

Exponential Distribution
Parameter: A

M=c=UAandB, =4

The exponentia distribution is often used to model situationsinvolving the
random variable of time between arrivals. When we say that the average ar-
rival rateis A, but the arrivals occur independently, then the time between
arrivals has an exponential distribution which is characterized by the single

positive parameter A. The density has the shape shown in Fig. 10.
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Integrating the pdf yields a closed form expression for the CDF. The
distribution has equal mean and standard deviation, and the skewness
measure isaways 4. Becauseit is skewed to theright, the mean is always
greater than the median. The probability that the random variableisless

than its mean is independent of the value of A: P(x < ) = 0.6321.

For the example, we know that the mean time between arrivalsis 30
seconds. The average arrival rateis therefore 2 per minute. The required
probability isthen

P(x>1)=1-F(1) = exp(-2) = 0.1353.
The exponential distribution isthe only memoryless distribution. 1f

an event with an exponentia distribution with parameter A has not occurred
prior to sometime T, the distribution of the time until it does occur has an
exponentia distribution with the same parameter.

The exponential distribution isintimately linked with the discrete
Poisson distribution. When the time between arrivals of some processis

governed by the exponentia distribution with rate A, the number of arrivals
inafixed interval T is governed by the Poisson distribution with mean value

AT. Such aprocessis called a Poisson process.

Gamma Digribution

Example 14: Consider asimple manufacturing operation whose completion time has a
mean equal to 10 minutes. We ask, what isthe probability that the completion time will
exceed 11 minutes? We first investigate this question assuming the time has an exponential
distribution (aspecia case of the gamma), then we divide the operation into severa parts,
each with an exponentia distribution.

Gamma Distribution The gamma distribution models a
Parameters: A >0andr >0 random variable that is restricted to
N nonnegative values. The genera form
f(x) = @(XX) —lexp(-Ax) forx2 0 has two positive parametersr and A
: _ determining the density function. We
Q) isthe gammafunction restrict attention to integer values of r
¥ although the gamma distribution is
qr) = 6 x—leX dx . defined for noninteger values as well.
0 Figure 11 shows several gamma
; ; —(r_1\I distributions for different parameter
Whenris an integer, &r) = (r— 1) values. The distribution allows only
r r r —1 positive values and is skewed to the
H:I, 02=7L_2, Xmode = X right. Thereisno upper limit on the
value of the random variable. The
parameter r has the greatest affect on the

shape of the distribution. With r equa to 1, the distribution isthe
exponentia distribution. Asr increases, the mode moves away from the
origin, and the distribution becomes more peaked and symmetrical. Asr
increases in the limit, the distribution approaches the Normal distribution.
The gamma distribution is used extensively to model thetime

required to perform some operation. The parameter A primarily affectsthe
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location of the distribution. The special case of the exponential distribution
isimportant in queueing theory where it represents the time between entirely
random arrivals. When r assumes integer values, the distribution is often
called the Erlang distribution. Thisisthe distribution of the sum of r
exponentially distributed random variables each with mean /A. All the
distributionsin Fig. 11 are Erlang distributions. This distribution is often
used to model a service operation comprised of a series of individua steps.
When the time for each step has an exponential distribution, the average
timefor all steps are equal, and the step times are independent random
variables, the total time for the operation has an Erlang distribution.
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Figure. 11. Severa gammadensity functions

Cumulative Distribution of the Gamma With integer

PXEX)=FX)=1-Q

r, aclosed form
forx3 0 expression for the
0 k! cumulative
distribution of the

51 (W)  exp(- AX)
K=

gamma allows easy computation of probabilities. The summationisthe
CDF of the Poisson with parameter AX.

In the example for this section, we have assumed that the mean
processing time for a manufacturing operation is 10 minutes and ask for the
probability that thetimeislessthan 11 minutes. First assume that the time
has an exponential distribution -- aspecia case of the gammawith r equal to
1. The given mean, 10, provides us with the information necessary to

compute the parameter A.
1

1
H=—orA=—=0.1
I8 0

Forr=1,A=01weget u =10,c =10, and P(X < 11) = 0.6671
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Now assume that we can divide the operation into two parts such
that each part has a mean time for completion of 5 minutes and the parts are
donein sequence. In this situation, the total completion time has agamma

(or Erlang) distribution with r = 2. The parameter A is computed from the
mean completion time of each part, g = 5.

7\,2120.2
w

We compute the results from the gamma distribution. Forr =2, A = 0.2 we
havep = 10, 6 = 7.071, and P(X < 11) = 0.6454.
Continuing in this fashion for different values of r with the
parameters such that A = r / 10, gives
Forr=10,A =1 n =10, c =3.162, P(X < 11) = 0.6594.
Forr=20,A =2 n =10, c =2.236, P(X < 11) = 0.6940.

Forr=40,A=4: u =10, c =1.581, P(X < 11) = 0.7469.
Asr increases, the distribution has |ess variance and becomes | ess skewed.

One might ask whether the normal distribution is a suitable
approximation asr assumes higher values. We have computed the
probabilitiesfor r = 20 and r = 40 using a normal approximation with the
same mean and variance. The results are below.

For X normal with pn =10, 6 = 2.236) P(X < 11) = 0.6726.

For X normal with u =10, o =1.581: P(X < 11) = 0.7364.
It is apparent that the approximation becomes more accurate asr increases.

Beta and Uniform Distributions

Example 15. Consider the following hypothetical situation. Gradesin a senior
engineering class indicate that on average 27% of the studentsreceived an A. Thereis
variation among classes, however, and the proportion must be considered arandom
variable. From past data we have measured a standard deviation of 15%. Wewould like
to model the proportion of A grades with a beta distribution.

Beta Distribution The beta distribution isim-

Parameters;a >0 andb >0

Ga + b)
fX)=———=——xa11-x)1 for OEx£1
__a - ab
Ko+ T @+b2a+b+ 1)
« _ooa-1
mode —oc+[3-2

portant because it has afinite
range, from O to 1, making it
useful for modeling phenom-
enathat cannot be above or
below given values. The
distribution has two parame-

ters, oo and 3, that determine

its shape. When o and 3 are
equal, the distribution is
symmetric. Increasing the
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values of the parameters decreases the variance. The symmetric caseisil-
lustrated in Fig. 12.
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Figure 12. The symmetric case for the beta Distribution

When o isless than 3 the distribution is skewed to the right as shown in
Fig. 13. Thedistribution function is symmetric with respect to o and 3, so
when o is greater than 3, the distribution is skewed to the | ft.

The uniform distribution is the special case of the beta distribution
with o and 3 both equal to 1. The density function has the constant value

of 1 over theOto 1 range. When oo = 1 and 3 = 2, the resulting beta distri-
bution isatriangular distribution with the mode at O.
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Figure 13. Beta distribution as 3 increases for constant o

A linear transformation of a beta variable provides arandom variable
with an arbitrary range. The distribution is often used when an expert
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provides alower bound, o, upper bound, B, and most likely value, m, for
the time to accomplish atask. A transformed beta variable could be used to
represent the time to complete atask in a project.

With alinear transfor-

Generalized Beta Distribution

Parameters. a0 >0, >0,a b
wherea<b

X o O
¢

ea +Bo

H=a+(b-a

s2- _ (b-aap
(o +B)( +B +1)

i o-1 0
mode=a+(b- a)f ———v
( )%oc+B-2g

mation we change the domain
of the betadistribution. As-
sume X has the beta distribu-
tion, and let

Y =a+ (b—aX.

The transformed distribution
called, the generalized beta, has
therangeatob. The mean and
mode for the distribution are
shifted accordingly. The mode
of Y isthe most likely value, m,
and relates to the mode of X as

o-1 _m-a

Xmode =

a+Bp-2 b-a

Given values of a, b and m, one obtains a relation between o, and

B. Selecting avalue for one parameter determines the other. Probabilities
are calculated from the Beta distribution.

Uniform Distribution
Parameters, a<b
1
f(x) = —— foraE x£Db
(x) b
_atb
2
o2 (-2’
12

values of o.

|y o X- ai
P{Y £y} = PIXE—V}.
{Y£y} = PIXE - a%}

The generalized uniform distribution has an arbi-
trary rangefrom ato b. Its moments are deter-

mined by specifying o and B equal to 1.
We use the beta distribution to modd the

proportions of the example problem, since they are
restricted to values between 0 and 1. The example

gives the average proportion of A’sas0.27. The standard deviation is
specified as 0.15. To use this data as estimates of p and o, we first solve
for B asafunction of uanda.

B: 0‘(1- ““)
uw

Substituting 1 = 0.27 into this expression, we obtain 3 = 2.7037c.

There are avariety of combinations of the parametersthat yield the
required mean. We use the given standard deviation to make the selection.

Table 13 shows the value of 3 and the standard deviation for several integer
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Table 13. Standard deviation of beta distribution

o 1 2 3 4 5 6 7 8 9 10
2704 541 811 1081 1352 16.22 1893 2163 2433 2/.04
6 | 0204 015 013 011 010 009 009 008 0.08 0.07

=

The standard deviation associated with o =2 and b = 5.41
approximates the data. With the selected model, we now ask for the
probability that the grades in a class re more than 50% A. An Excel
spreadsheet function provides the values of the CDF for the given

parameters (o, B) = (2, 5.4074). Theresultsindicate that P{X > 0.5} =
0.0873.

Weibull Distribution

Example 16: A truck tire has amean life of 20,000 miles. A conservative owner decides
to alwaysreplace atire at 15,000 miles rather than risk failure. What is the probability that
thetirewill fail beforeit isreplaced? Assumethelife of thetire hasaWeibull distribution

with parameter § = 2.

Weibull Distribution Thisdistribution
Parameters: o > 0, § >0 rr%agafﬁﬁcglal)
reliability experts,
f(x) = o xB-Lexp{-oxB} forx3 0 however, it can be
used to model
F(x) =1 - exp{-oxB} forx3 0 other phenomena
aswell. As
illustrated in Fig.
14, the
distribution is

2 1 defined only for
o?2=o2B{ql+ =)-[Q1+ )% nonnegative

B B variables and is
skewed to the

Xirode = B\/El right. It hastwo
of parameters o. and
B.
The parameter B affects the form of the distribution, while for a
given 3, the parameter o affects the location of the distribution. The cases

of Fig. 14 have o adjusted so that each distribution has the mean of 1.

When 3 is 1, the distribution is an exponential. As [} increases and the
mean is held constant, the variance decreases and the distribution becomes
more symmetric.

u=a-ﬂﬁe(1+§)
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Figure 14. Weibull pdf

_ Conveniently, the cumulative distribution has a closed form expres-
sion.
In reliability modeling, the random variable X isthetimeto failure
of acomponent. We define the hazard function as

_ X
M) = 1- F(X)

when X = x. For asmall timeinterval D, the quantity A(x)D isthe

probability that the component will fail in thetimeinterval {x, x + D}, given
it did not fail prior to time x. The hazard function can be viewed asthe
failure rate as afunction of time. For the Weibull distribution

A(X) = o XL

For B =1, the hazard function is constant, and we say that the
component has a constant failure rate. The distribution for timeto failureis
the exponential distribution. Thisis often the assumption used for
€lectronic components.

For B = 2, the hazard rate isincreasing linearly with time. The
probability of failurein asmall interval of time, given the component has
not failed previoudly, is growing with time. Thisisthe characteristic of
wear out. Asthe component gets older, it beginsto wear out and the

likelihood of failureincreases. For larger values of 3 the hazard function
increases at a greater than linear rate, indicating accel erating wear out.

Alternatively, for B < 1, the hazard function is decreasing with time.
This models the characteristic of infant mortality. The component hasa
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high failure rate during its early life but when it survives that period, it
becomeslesslikely to fail.

For the example, we assume the truck tire has a mean life of 20,000

miles, and we assume the life has a Weibull distribution with B equal to 2.
The owner decidesto replace thetire at 15,000 miles rather than risk failure.
We ask for the probability that the tire will fail beforeit is replaced.

To answer this question, we see that the mean of the distributionis
given as 20 (measured in thousands of miles). Because only B isaso
specified, we must compute o for the distribution. The expression for the
mean is solved for the parameter o, to obtain

Sor+2yuP
e u

o= _ b .
€ u ¢
& b
Evaluating this expression for the given information, we obtain
63(1.5)02

oa=g 20 o =0.0019635.
Computing the required probability with these parameters gives
P{x < 15} = F{15} = F(x) = 1 —exp{-a,(15)B} = 0.3571.

Thisresult looks alittle risky for our conservative driver. He asks,
how soon must the tire be discarded so the chance of failureislessthan
0.1?

To answer this question, we must solve for the value of x that yields
aparticular value of F(x) (z= F*(0.1)) . Using the CDF thisiseasily
accomplished.

_BAnMI=F]  2[Ano9
2=\[" o = \/oo01962 = 7-325

To get thisreliability, the owner must discard histiresin alittle more than
7000 miles.

Trandations of a Random Variable

Example 17: Aninvestment in an income producing property is $1,000,000. Inreturn
for that investment we expect revenue for each of the next 5 years. Therevenueis
uncertain however. We estimate that the annual revenues are independent random
variables, each with anormal distribution having a mean of $400,000 and a standard
deviation of $250,000. Negative values of the random variable indicate aloss. We
evaluate the investment by computing the net present worth of the cash flows using a
minimum acceptable rate of return (MARR) of 10%.
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Say the amount of theincomein year t is R(t) and the MARR isi.
Assuming discrete compounding and end of the year payments, the present
worth for the cash flow at year tis

R(t)
@+t
With theinitia investment in the amount | the net present worth (NPW) for
aproperty that lastsn yearsis

PW(t) =

NPW = -1+

R

§ RO
t=1(1+1)
A NPW greater than O indicates that the rate of return of the investment is
greater than the MARR and is therefore acceptable. The problem hereisthat
the revenues are independent random variables so the NPW isalso a
random variable. The best we can do is compute the probability that the
NPW will be greater than 0. Although the annual revenues all have the

same distributions they are linearly trandated by the factor 1/(1 + i)', a factor
that is different for each year.

We use the following general results to deal with this situation. Say
we have the probability distribution of the random variable X described by

fx(x) and Fx(x). We know the associated values of the mean (), variance

(0%) and the mode (Xmode) Of the distribution. We are interested, however,
inatrandated variable

Y = a+ bX,

where ais any real number and b is positive. We want to compute
probabilities about the new random variable and state its mean, variance and
mode.

Probabilities concerning Y are easily computed from the cumulative
distribution of X.

Y'ad_Faﬂ‘/'ad
- - x\_.
b € p @

The mean, variance and mode of Y are, respectively,

wy=E{Y} = E{a+ bX} = a+ buy.

Fry) = P{Y £y} = PIXE

oy = E{(Y —1y)2} = b2%6% or oy = boy.
Ymode = @+ bXmode
To use these results for the exampl e problem, we note that the
present worth factors are alinear trandation with
a=0andb=21/(1+i)".
Thus the contribution of year t to the net present worth isarandom variable

with u = 400/(1 + i)' and 6 = 250/(1 +i)". We use three factsto continue:
(i) the sum of independent random variables with normal distributionsis
also normal, (ii) the mean of the sum isthe sum of the means, and (iii) the
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variance of the sum isthe sum of the variances. We conclude that the NPW
has anormal distribution with
5
1L =-1000+ & 400/(1+i)! =516.3
t=1
S5 1 o
ando =250 .[a $—— =~ =427.6.
t=€(1+i)" o
Based on these parameters and using i = 10%, we have P(NPW < Q) =
11.4%. Itisup to the decision maker to decide whether therisk is
acceptable.
Modeling

To model a continuous random variable for analytical or simulation studies,
adistribution must be selected and its parameters determined. Logical
considerations and dtatistical analysis of similar systems can guide the
selection.

When independent random variables are summed, the normal
distribution is the preferred choice when the individual s have normal
distributions, and the Erlang distribution (a special case of the gamma) isthe
choice when the individuals have exponential distributions. When alarge
number of random variables are summed that are of approximately the same
magnitude, the Normal distribution is often a good approximation.

A disadvantage of the normal distribution isthat it allows negative
values. Where the mean is not much larger than the standard deviation this
might be a problem when the random variable islogically restricted to be
nonnegative. Timeisaprime example of this situation. The lognormal,
gammaand Weibull distributions are some examples that might be
appropriate to model time. These distributions also exhibit asymmetry that
might be important in practice. The Weibull distribution isimportant in
reliability theory when failure rate information is available.

When the physical situation suggests both upper and lower bounds,
the uniform, triangular, and generalized beta distributions can betried. The
uniform distribution has only the bounds as parameters, and might be used
when thereis no other information. The triangular distribution has athird
parameter, the mode, and is used for cases when one estimates the most
likely value for the random variable, in addition to itsrange. The
generalized betais very flexible with alarge variety of shapes possible with
asuitable selection of parameters.
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21.5 Simulating Random Variables

Depending on the application, we often create probability models of certain aspects of
systems. For simple cases, we compute probabilities of events using probability theory.
There are many situations, though, that are affected by more than one random variable.
Because of their complexity, many problemswill not yield to easy analysis. Rather, itis
necessary to smulate the severa random variables that describe the situation, and observe
and analyze their effects with the help of statistics. The approach iswidely used in
operations research. We provide an e ementary discussion of simulation in this section and
add depth in Chapter 18 . In addition to its power as atool for analyzing complex systems,
simulation provides a medium for illustrating the ideas of variability, uncertainty and
complexity. We construct asimulated reality and perform experiments on it.

A Production Process

Example 18: Consider an assembly process with three stations. Each station produces a
part, and the three parts are assembled to produce afinished product. The stations have
been balanced in terms of work load so that each has an average daily production equal to
10 units. The production of each station is variable, however, and we have established that
the daily rate has a discrete uniform distribution ranging from 8 to 12. Work in process
cannot be kept from one day to the next, so the output of the lineis equal to the minimum
production rate of the three stations. Let X1, X2 and X 3 be random variables associated
with the production at the three stations, respectively. The daily production of thelineisa
random variable, Y, such that Y = Min{ X1, X2, X3}. Our interest islearning about the
distribution of the random variable Y.

The dedicated student may be able to derive the PDF of Y given this
information; however, we will take the conceptually easier approach of
simulation. We observein Table 15 ten days of smulated operation. The
production in each station is simulated?® using the methods described later in
this chapter. With these observations we compute the smulated production
of thelineas

y = Min{Xy, X5, X3}.

Table 15. Simulated observations of production line

Random Day

variate 1 2 3 4 5 6 7 8 9 10
Xq 11 10 8 11 9 12 8 11 12 9
X 12 10 10 12 8 9 8 9 10 9
X3 9 8 8 9 9 12 12 9 10 10
y 9 8 8 9 8 9 8 9 10 9

The ssimulation provides information about the system output. The
statistical mean, variance, and standard deviation are

y = 8.7, = 0.4556, s= 0.6749.

3The observations were simulated by x; = ROUND(7.5 + 5r). This provides a discrete uniform distribution
with integer values between 8 and 12.



Probability Models

We conclude that the average daily production of the system iswell below
the average of the individua stations. The cause of thisreductionin
capacity isvariability in station production.

Because the statistics depend on the specific simulated observations,
the analyst usually runs replications of the experiment to learn about the
variability of the simulated results. The table below shows six replications
of this experiment. Although the results vary, they stay within a narrow
range. Our conclusion about the reduction in the system capacity is
certainly justified.

n
mean: Y = é’\yi/n
i=1

sample variance:

&= 40- 9?2 /-1
i=1

standard deviation: s = \/;2

Replication 1 2 3 4 5 6
y 8.7 8.6 9.1 9 8.8 8.8
Sample Jatistics The grand average and the

standard deviation of the six
observationsis 8.833 and 0.186,
respectively. Since each of the
replication averages are determined by
the sum of 10 numbers, we can
conclude from the centra limit theorem
that the average observations are
approximately normally distributed.
This alows a number of additional
satistical tests on the results of the

simulation replications.

Simulation is avery powerful
tool for the analysis of complex systems involving probabilities and random
variables. Virtually any system can be ssmulated to obtain numerical
estimates of its parameters when itslogic is understood and the distributions
of itsrandom variables are known. The approach used extensively in the
latter chapters of the book to illustrate the theoretical concepts, as well asto
provide solutions when the theoretical results are either not available or too
difficult to apply.

Simulating with the Rever se Transfor mation M ethod

The conceptually simplest way to simulate arandom variable X with density
functionfy(x), is called the reverse transformation method. The cumulative
distribution function is Fy(x).

Let R be arandom variable taken from a uniform distribution
ranging from O to 1, and let r be a specific observation in that range.
BecauseR is from auniform distribution

P(RETr} =r.
L et the smulated value x5 be that value for which the CDF, F(xs), equalsr.
r =F(xs) or xs=FXr).

The random observation is the reverse transformation of the CDF, thus
providing the name of the method. The processisillustrated for the
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example in Fig. 14 where we show the CDF for the production at a station
in Example 18. Say we select the random number 0.65 from a continuous
uniform distribution. We locate 0.65 on the F(x) axis, project to the
cumulative distribution function (the dotted line), and find the value of the
random variable x for which F(x,) = 0.65. For thisinstance, x, = 11.
Table 16 shows the random numbers that provided the observations of
Table 15.

FOO

1

0.9

0.8

0.7

0.6

0.5

0.4 -

0.3 7

0.2

0.1

X

8 9 10 11 12 13

Figure 14. Reverse transformation method for a discrete distribution

Table 16. Random numbersfor 10 days

Day
1 2 3 4 5 6 7 8 9 10

0.6151| 0.5569| 0.18 | 0.7291| 0.3046( 0.869 | 0.1611| 0.6633| 0.9535| 0.3298
0.861 | 0.5541| 0.4883| 0.983|0.1391| 0.251 | 0.1389| 0.3261| 0.5123( 0.3793
0.3108| 0.0923( 0.141 | 0.3124| 0.2558| 0.9785| 0.9638| 0.3351| 0.5778( 0.4323

Discrete Random Variables

For a second illustration of the reverse transformation method for a discrete
random variable, consider the binomial distribution withn= 3 and p = 0.9.
The PDFis

Py(K) = @ék 3(0.9) k (0.1)3k fork = 0,1,2, 3.
Table 17 shows the probabilities associated with this distribution.

Next we defineintervals on the real number linefrom Oto 1 for the
possible values of the random variable. The intervals are computed using
the cumulative distribution. In general, whenrisareal number and x isa
finite discrete random variable, the intervals are

I(K) = {1 |Fx(k=1) <1 < F(K)} k = 0,1,2,...n.
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For the example case the intervals are shown in Table 17.

Table 17. Simulation intervals for binomial distribution with n=3, p = 0.9.

k 0 1 2 3
P(Kk) 0.001 0.027 0.243 0.729
F(k) 0.001 0.028 0.271 1.000
[(K) 0-0.001 0.001-0.028 0.028—-0.271 0.271-1.0

To simulate an observation from the distribution, we select arandom
number and determine the smulation interval in which the random number
falls. The corresponding value of k isthe simulated observation. For
instance, using the random number 0.0969, we find that 0.0969 isin the
rangel(2). The simulated observationisthen 2. In general, letrj bea
random number drawn from a uniform distribution in therange (0, 1). The
simulated observation is

Xj ={k | Fx(k —1) <rj < Fx(k)}.
Six simulated values are shown in Table 18.

Table 18. Simulated values for binomial distribution

Random
number 0.0969 0.2052 0.0013 0.2637 0.6032 0.5552

Smulated
observation 2 2 1 2 3 3

Based on a sample of 30 observations, the sample mean, variance
and standard deviation are computed as shown in Table 19. We aso
estimate the probabilities of each value of the random variable from the
proportion of times that value appearsin the data. The sample results are
compared to the population valuesin the table.

Table 19. Distribution information estimated from simulation

Parameter | Estimated from sample Population value
Mean 2.667 2.7
Variance 0.2989 0.27
Standard deviation 0.5467 0.5196
P(0) 0 0.001
P(1) 0.0333 0.027
P(2) 0.2667 0.243
P(3) 0.7 0.729

The statistics obtained from the sample are estimates of the
population parameters. If we simulate again using a new set of random
numbers we will surely obtain different estimates. Comparing the statistics
to the popul ation values we note that the statistical mean and variance are
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reasonably close to the parametersthey estimate. We did not observe any
values of 0 from the sample. Thisis not surprising as the probability of
such an occurrence is one in athousand, and there were only 30
observations.

Continuous Random Variables

Example 19: A particular job consists of threetasks. Tasks A and B are to be done
simultaneously. Task C can begin only when both tasks A and B are complete. The times
required for thetasksare T,, Tg, and T respectively, and al times are random variables.
T, has an exponential distribution with amean of 10 hours, T, has auniform distribution
that ranges between 6 and 14 hours, and T hasanormal distribution with amean of 10
hours and a standard deviation of 3 hours. The time to complete the project, Y, isa
random variable that depends on the task times as follows.

Y=Max{T,, Tg} +T.
What is the probability that the promised completion time of 20 hoursis met?

An analytic solution to this problem would be difficult because the
completion time isacomplex combination of random variables. Simulation
provides statistical estimates concerning the completion time.

Table 20 shows the results for 10 ssimulations. The rows labeled r
provide the random numbers used to ssmulate the random variables and the
rows labeledt,, t; and t, show the associated observations. The row
labeled y is computed using the system equation and the observationsin
each column. The process of producing the smulated observationsis
described presently.

Table 20. Simulated results for example

Random Run number
vaiate 1 2 3 4 5 6 7 8 9 10

0663 0979 025 0312 0141 0.092 0311 0251 0.139 0.983
1089 3841 2954 3745 152 0968 3722 289 1497 40.76
0953 033 0139 0326 0512 0379 094 0335 0578 0432
1363 8638 7111 8609 101 9034 1371 8681 10.62 9.459
0731 0.615 0557 018 0729 0305 0869 0.861 0554 0.488
1185 1088 1043 7.253 11.83 8466 1336 1325 1041 9912
2548 4928 1754 1586 2193 175 2707 2194 2103 50.67

It isclear from the 10 completion timesin Table 20, that thereis
quite abit of variability in an estimate of the time to complete the project.
There are 3 numbers below 20, so an initial estimate of the probability of a
completion time less than 20 would be 0.3. A much larger sample would be
necessary for an accurate determination.
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Closed Form Smulation

The reverse transformation method can be used to simulate continuous
random variables but the probabilities do not occur at discrete values.
Rather we have the CDF that indicates the probability that the random
variable falls with a specified range.

P{X £ x} = F(x)
The process for generating random variates follows.
e Sdect arandom number r from the uniform distribution.

» Findthevaue of x for whichr = F(x) or x = F(r).
* Theresulting x isthe simulated value.

For some named distributions we have a closed form functiona
representation of the CDF, while for others we must use a numerical
procedure to find the inverse probability function. When we have a closed
form expression that can be solved for x givenr, the simulation procedure is
easly performed. For example, consider the exponential distribution for

task A. The mean of 10 hoursyields the parameter A = 0.1. The general
form of the pdf is

f(x) = re ™ and F(x) = 1— ™ forx 2 0.
Setting the cumulative distribution equal to r and solving we obtain

r=1-e™orx=—(U\)InlL-r).

Thefirst linelabeled r in Table 20 is used to simulate T,, shown in the
following line. For example, when

r=0.663, t, = —10In(1 —0.663) = 10.89.

The uniform distribution associated with T is also smulated with a
closed form expression. The CDF for auniform distribution ranging from a
tobis

FX)=(x—a/(b—a forat x£ b.
Setting r equal to the CDF and solving form x yields the smulated value
x=a+r(b-a).

Toillustrate, we compute the first smulated value of T, using the random
number r = 0.953.

t, = 8+ 0.953(14 — 8) = 13.63.

The Welbull distribution also allows a closed form ssmulation. We
set the expression for the CDF equal to the random number

r=F(x)=1—exp{-axP} forx3 0.
Solving for x, we obtain the expression for the simulated random variable
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B AnL—1]
X = - .
(04

We recognize that when r is arandom number from therangeOto 1, (1—r)
isaso arandom number from the same range. Thissimplifiesthe
expression for the simulated observation to

NIS/EIG)

(04

Smulation using Inverse Probability Functions

When a closed form expression is not available for the cumulative
distribution, numerical methods may be used to compute the inverse
probability function. For the example we used the inverse normal
distribution function available with the Excel spreadsheet program to
simulate the observations from T.. First we must find

t.=F'(n
where F'(r) is the inverse probability function for the normal distribution
with mean 10 and standard deviation 3 evaluated for the valuer. Figure 15

illustrates the reverse transformation in the case where a random number
equal to 0.731 yieldst,. equal to 11.85.
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0.4

0.3
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0.1

/
) oy ] + 8 u o Y| o+ w0 o i~
— 1] + ) o — S -+ - - o

Figure 15. Reverse transformation method for anormal distribution

We complete the first column in Table 20 by computing y with the
equation defining the interaction between the random variables.

y = Max{10.89, 13.63} + 11.85 = 25.48.
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Using Simulation to Solve Problems

One of the main applications of smulation isto analyze problemsinvolving
combinations of random variables that are too complex to be conveniently
analyzed by probability theory. Itisavery powerful tool because virtually
any system can be simulated to obtain numerical estimates of its parameters
whenitslogic is understood and the distributions of its random variables are
known. The approach is used extensively in the practice of operations
research.

Simulation does have its drawbacks, however. Except for very
simple systems, ssimulation analysis is computationally expensive. Inverse
probability functions that do not have a closed form may be difficult to
compute and complex systems with many random variables will burn up
computer time. Simulation results are statistical. One selection of random
variablesyields a single observation. Because most situations involve
variability, it is necessary to make alarge number of observations and use
statistical techniques to draw conclusions. Simulation results are sometimes
difficult to interpret. Thisispartly due to the complexity of many simulated
situations and partly due to their inherent variability. Effects may be
observed, but causes are difficult to assign.
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21.6 Exercises

1.

From the daily newspaper identify five quantities that are variable in time and uncertain
for the future. Provide data or charts that describe the historical variability. Describe
decisionsthat are affected by the values of the quantities.

A group of six students draws tickets to the football game. The tickets are for six
adjacent seats al on the samerow. One of the guys and one of the gals have a secret

affection for each other. If the tickets are passed out at random, what isthe
probability that they will sit next to each other?

A repeatable experiment involves observing two numbersa and b. The possible
number pairs (g, b) include

S ={(1,2), (1,3), (1,4), (2,1), (2,2), (2,3), (2,4), (3,1), (3,2), (3,4), (4,1), (4,2)}.
Each of the 12 elementsinthe set S are equally likely. For the following events

W ={(a bla=1},X ={(a b)|b<2},Y ={(a b)la+b £4},Z ={(a b)|b=2}

find the probabilitiesof W, X, Y, Z, WEY, WCZ, WE X EY E Z.

This problem usesthe events W, X, Y and Z defined in previous exercise. Again all
outcomes are equally likely. Consider in turn each of the six pairs that can be formed
from these events. For each pair below, indicate whether the events are mutually
exclusive or independent.

Pairs Wand X, WandY,WandZ, X andY, X andZ, Y and Z.

Fiveevents-- A, B, C, D, E-- are defined on a sample space of arandom
experiment. Events A, B and C are mutually exclusive, and you are given the
following probabilities.
P(A)=0.1, P(B) =04, P(C)=0.5 P(D)=0.16, P(D |A) =0.8,
P(D |B)=0.2, P(D |[C)=0, P(E |A)=0, P(E|B)=0.9, P(E|C)=0.1

Compute PO C A), P(B |D), P(D E B), P(E), P(B |E).

A quality control test involves removing a sample of three products from the
production linein each hour. They are then istested to determine whether or not they
meet specifications. The random variable for this situation is the number of units that
meet specifications. Define the following events.

A : a most 2 meet the specification

B : exactly 3 meet the specifications

C . at least 2 meet the specifications

a. Which events are mutually exclusive and which are not?

b. Interms of the random variable, what are the events AEB, AEC, and ACC.
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10.

11.

c. Say each unit meets specifications with probability 0.95 and that the units are
independent. Assign a probability to each event (and the combinations of events)

considered in partsaand b.

Therandom variable X isthe number of cars entering the campus of Big State
University from 1:00 AM to 1:05 AM. Assign probabilities according to the formula

e—55k
P(X =k) = k(! )fork=0,1, 2, ...

a. For the events
A: Morethan 5 cars enter
B: Fewer than 3 cars enter
C: Between 4 and 8 cars enter

find P(A), P(B), P(C), P(AEB), P(AEC), P(BEC), P(AEB EC), P(ACB),

P(ACC), P(BCC), P(ACB CC), P(A |B), P(C |A), P(A |C).
b. Compute the CDF associated with the random variable.

Assign probabilitiesto an event E = {t|t; <t <t,} with thefunction
P(E) = exp(-ty) —exp(-ty)
DefineA ={t|0<t<1}, B={t|15<t<¥}andB ={t|05<t< 1.5}
Find P(A), P(B), P(C), P(AEB), P(AEC), P(BEC), P(AEB EC), P(ACB),

P(ACC), P(BCC), P(ACB CC), P(A |B), P(CIA), P(A[C).
Consider the situation of throwing two dice (each die has sides numbered 1 through
6). For each of the following random variablesfind P(S £ X £ 5).

a. X =sum of thetwo dice

b. X =number onthefirst die

c. X =average of thetwo dice

d. X =largest of the two numbers on the dice

Hillary makes $15 each Saturday night that she babysits. Based on past experience,
she computes that there is an 80% chance that she will be called for ajob in one week.
The weeks are independent. Hillary wants to save $90 for a new dress. Assuming
that she saves al the money she makes, what isthe probability that more than eight
weeks are required to save the $90?

Computationsindicate that amissile fired at atarget will destroy the target 35% of the
time. Assume all missilesfired are independent and have the same probability of
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12.

13.

14.

15.

16.

17.

destruction. How many missiles must be fired to assure that the target will be
destroyed with a 0.90 probability?

The kicker on the football squad has a 60% chance of successfully kicking afield goa
on eachtry. If heisgiven five opportunitiesin agame, what is the probability that he
will complete at least four field goalsin the game?

Ten studentsin aclass of 30 are girls. On the first midterm, girls score four of the top
five grades. What isthe probability that this result could have occurred purely by
chance?

During the preregistration period, students arrive at random to a professor's office at
an average rate of 5 per hour. What isthe probability that fewer than two students
will arrive during a 10- minute period?

We select an item from the assembly line and note that it is either operating or failed.
The associated probabilities are P(operating) = 0.8 and P(failed) = 0.2. For each
situation below identify the probability distribution, specify the parameters, and
answer the question.

a. Wedraw 10 such itemsfrom theline. What isthe probability that a majority of
them will work?

b. What isthe probability that at least 10 items must be taken from the line before we
find five that are working?

c. What isthe probability that we will draw 5 working items before the first failed
oneis encountered?

In astandard deck of 52 cardsthere are 13 different card types labeled as follows: ace,
2,3,4,5,6,7,8,9, 10, J, Q, K. Each card type appearsin 4 suits: clubs,
diamonds, hearts and spades.

a. You are about to be dealt a hand of five cards from the pack of 52 (thisis selection
without replacement). What is the probability that at least three of the cards will be
aces?

b. Thedeaer will show you five cards. After each card isdrawn, it isreturned to the
deck (thisis selection with replacement). What is the probability that at |east three
of the cards shown are aces?

c. Thedealer will show you a series of cards off the top of the deck. After each card
isdisplayed, it is returned to the deck (thisis selection with replacement). The
dealer will continue showing you cards until 3 aces have appeared. What is the
probability that five or fewer cards must be shown?

An OR professor always gives tests made up of 20 short answer questions. Five
points are given for each correct answer so a maximum total score of 100 is possible.
She grades the questions as either right or wrong with no partial credit. Based on
your current knowledge of the subject, you judge that you have a 0.7 probability of
answering any one guestion correctly. Assume the questions are independent in
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18.

19.

20.

21.

22.

terms of chance of success. If ascore of 80 or more earns at least a B, what is the
probability that you will earn at least a B for this exam?

An accounting professor always gives tests made up of 20 short answer questions.
Five points are given for each correct answer so a maximum total score of 100 is
possible. No question may receive partial credit —it is either right or wrong. Based
on your understanding of the material in the course, you judge that your mark on each
question is arandom variable with mean equal to 3 and a standard deviation equal to
1. Assumethat the questions are independent in terms of chance of success. Before
you take the test what is your estimate of the mean and standard deviation of your
final score? If ascoreof 80 or more earns at least a B, what is the probability that
you will earn aB for this exam? Y ou will have to make an approximation to answer
this question.

A major manufacturing company needs at least three design engineersfor an
upcoming project, but will take more. The manager in charge of hiring will conduct a
series of interviews in hopes of finding at least three “good” applicants who will
accept ajob offer. The probability that an applicant is“good” is 0.4, and the
probability that a*“good” applicant will accept the job is0.6. She makes offersto
every “good” applicant. In answering the following questions, assume that the
applicants are independent.

a. If the manager conducts 10 interviews, what distribution describes the number of
engineers she will hire? What is the probability that at least three will be hired?

b. If the manager conducts as many interviews as necessary to find the three
engineers, what distribution describes the number of interviews required? What is
the probability that at least 10 interviews will be required?

A robotic insertion device must place 4 rivets on a printed circuit board. Rivetsare
presented to it at random, but 10% of the supply are faulty. When afaulty rivet is
encountered it must be discarded, and another drawn. We want to compute
probabilities regarding the number of draws required before 4 good rivets are found.
In particular, what is the probability that exactly 10 draws are required before we find
4 good rivets.

The Department of Industrial Engineering at alocal university has six full professors,
four associate professors, and five assistant professors. A committee with five
members is chosen at random from all the professors. What is the probability that a
majority of the committee will be full professors.

A box contains three red dice, two blue dice and one green die. For the following
experiments describe the probability distribution function for the random variable.

a. Threedice are drawn from the box with replacement. The random variableisthe
number of red dice drawn. What isthe probability that at least 2 red dice are
drawn?

b. Threedice are drawn without replacement. The random variable is the number of
blue dice drawn. What is the probability that at exactly 2 blue dice are drawn?
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23.

24,

25.

26.

27.

c. Draw adieout of the box. Observeits color. Return the dieto the box. Continue
drawing dice in this manner until the green dieisfound or five dice have been
drawn. Therandom variable is the number of red or blue dice drawn before the
experiment stops. What is the probability that the process stopsin three or fewer
draws.

The game of Russian Roulette uses a gun which hasasingle live bullet placed in one
of the six chambersin the cylinder. Player A spinsthe cylinder, places the gun to his
head and pullsthetrigger. If player A survives, player B repeats the process. The
game continues with the players taking turns until one finds the bullet.

a. Compute the probability distribution of the number of times the trigger will be
pulled until aplayer iskilled. Thelast pull kills one of the players.

b. Find the probability that the game lasts longer than six rounds.

c. If the players pledge to stop after six rounds, what is the chance that each player
will be killed?

A lineformsin front of aticket booth with one window. Observing the number of
persons in the line (including the one being served), you estimate the probability for k
personsin line, py, to be the values given below. Y ou never observe more than four

personsintheline.

k 0 1 2 3 4
Py 0.3278 | 0.2458 | 0.1844 | 0.1383 | 0.1037

a. Compute the mean value and standard deviation of the number of personsin the
line.

b. What isthe probability that the server is busy?

Find the values of the mean and standard deviations for the following distributions:
a f(x)=l4forx=1,2, 3,4
b. Therandom variable X hasabinomial distribution withn =10and p = 0.6.

-4 A\ X
€
c. f(x)= x(!) forx=0,1,2, ..

A continuous random variabl e has the pdf

jlfor OExX£1

f09 = % 0 elsewhere

Derive the formulas for the CDF, mean, variance, and median.

Consider a continuous random variable with the pdf
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28.

29.

30.

31

1.0.5 for O£ x<0.5
fx) =ik forO5£x£1
10 dsewhere

What isthe value of k that makes this alegitimate pdf? Find an expression for the
CDF for this random variable.

Consider a continuous random variable Y with the pdf

Ky—10)for 10£  x £20
fY) =10 elsewhere

a. Findthevalue of k that makesthisa pdf. Find an expression that describes the
CDF, F(y), for al y.

b. Compute the mean, standard deviation, median, mode of the distribution.
Fromthe CDF find P{Y < 12}, P{12< Y < 18}.

Consider the previous exercise by now express Y asalinear transformation of a
random variable X (i.e., Y = a+ bX), where X hasatriangular distribution that
ranges from 0 to 1.

a. What iscfor thedistribution of X?
b. What areaand b for the transformation?

c. Compute the mean, standard deviation, median, mode of Y from the
corresponding values for X.

d. Fromthe CDFof X find P{Y< 12}, P{12<Y < 18}.

f (x)

For the accompanying probability 172
distribution, find
a PLEXED
b. the mean

c. thevariance
d. the median 0
e. themode

1/4

x

A manufacturer of men’s bathrobes makes only one size which is designed to fit any
man with a chest size more than 39 inches and less than 43 inches. Using data
gathered by the U.S. Dept. of Statistics on Interesting Phenomena, the company
determines that the mean chest size of men in the United Statesis 41.5 inches. The
standard deviation is 1.75 inches. Assuming that chest size has anormal distribution,
what proportion of the population will not fit into the robe?
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32.

33.

35.

36.

37.

38.

Consider the information given in the previous exercise with the additional caveat that
the robe will not fit men who are less than 68 inches tall or more than 75 inches tall.
Assume that the height of men has anormal distribution with mean 70 inches and a
standard deviation of 3 inches. For smplicity assume also that height and chest size
are independent random variables. What proportion of the men will fit into the robe
considering both restrictions?

A grocery store clerk must pack nitemsin abag. The averagetimeto pack anitemis
1 second with a standard deviation of 0.5 seconds. What is an appropriate
distribution for modeling the total time required to pack the bag (some assumptions are
needed).

Uncharacteristically, Martha Stewart is having difficulty cutting a pie into six even
pieces. Starting from a given point she can will cut adice of pie with acentral angle

o.. Thecentral angleisanormal distributed random variable with a mean of 60
degrees and a standard deviation of 5 degrees. Thefirst five pieces are cut with this
accuracy. Thelast piece iswhat remains.

a. If the Stewart family judges as acceptabl e a piece with an angle between 55 and 65
degrees what is the probability that each of thefirst five piecesis acceptable?

b. What isthe probability that the final piece is acceptable?
c. What isthe probability that all six pieces are acceptable?

Consider arestaurant open only for the lunch hour. The number of persons, Z,

seeking service has anormal distribution with mean .z and standard deviation o5.
Because of congestion it has been found that the time for the restaurant to clear after
the lunch hour, X, isan exponential function of the number of customers. That is

X = a-ebz, where aand b are constants.

What is the probability distribution for the random variable X? Intermsof u;, 6z, a
and b, what are the mean and standard deviation of X?

A manufacturing operation has a mean time of 10 minutes. We have the option of
dividing the operation into 1, 2, 5 or 10 components. The components must be
processed sequentially and the entire operation is complete only when al the
components are finished. When the number of componentsis n, the mean time to
complete a component is 10/n. The time to compl ete each component has an
exponentia distribution. Compute the probability that the total completion time, Y, is
between 9 and 11 minutes. Hint: make use of the gamma distribution.

Use the standard normal distribution to approximate the case of 10 componentsin the
previous exercise. Computethe P(Q £ Y £ 11) and compare it with the value
computed with the gamma distribution.

The chief technology officier estimates that a project will take at least four months and
at most eight months. He would like to associate a generalized beta distribution with
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39.

40.

41.

42.

these estimates. For the severa possible values of the most likely times given in the
table, fill in the missing values of o and 3.

Most likely, m| 4 5 6 7 8
o 2 2 2
B 2 2

It is estimated that a software devel opment project will take at least four months and at
most eight months. Find the probability that the completion time will be less than six
months when we use the following beta distribution parameters to model the time to
completion, Y.

aa=2 b=2
b. «=2, B=5
c.a=5 pB=2

Ten students join hands. The reach of one student (the distance from the | eft to the
right hand) is arandom variable with anormal distribution having p = 38 inches and o

= 4 inches. What is the probability distribution of the combined reach of all ten
students?

Tillie enters abank and finds asingle teller at work with aline forming in front of the
window. From past experience she estimates amean time of 2 minutes for each
customer. For the service time distributions specified in each part below, what isthe
probability that she will begin her service within the next 15 minutesif thereis one
person ahead of her (the personisalready in service)? Answer thisquestion if she
finds two persons waiting or in service when she enters the bank. Answer the
guestion for 5 persons.

a. Thetimefor service of each customer has an exponential distribution.

b. Thetime for service of each customer has anormal distribution with a mean of 2
minutes and a standard deviation of 1 minute. Accept the possibility of negative
times.

c. Thetimefor service hasalognormal distribution with amean of 2 minutes and a

standard deviation of 1 minute.

A submarine must remain submerged for aperiod of three months. A particularly
important subsystem of the submarine has an exponentia failure time distribution with
amean of 5 months.

a.  What istherdiability of the subsystem? The reliability is defined as the probability

that the subsystem will operate without any failures for the full three month
mission.
b. The submarine stores one redundant subsystem (so there aretwo in all). The

redundant subsystem has no failure rate while in storage. What isthe reliability of
the subsystem with redundancy.
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The submarine stores four redundant subsystems (five in all). The redundant
subsystems have no failure rate while not operating. What isthe reliability of the
subsystem with redundancy.

Comment on the effect of redundancy on the reliability of the system. What are the
critical assumptions that make the above analysisvalid?

Say the cost of buying and holding a component for amission is $1000. The cost
of provisioning the submarine with new componentsif al on board fail is
$200,000. What is the optimal number of components to bring on the mission?

Change the situation of this problem so that all components have the same failure
rate whether they are operating or not. The sub still requires one good component
for asuccessful mission. What is the optimal number of components to bring?

Change the situation of this problem so that the time to failure of the operating

component has aWeibull distribution with amean of 5 months and parameter 3 =
2. Assume that non-operating components do not fail. Use simulation to estimate
thereliability of the system with 1, 2 and 3 components. Y ou will haveto
simulate to answer this problem for 2 and 3 components. Use 500 observations.

Exercises 43 —45. Use the random numbers in the table below to answer these questions.

Random Numbers

1 2 3 4 5 6

0.3410 0.4921 0.5907 0.9658 0.8632 0.6327
0.8228 0.4294 0.0809 0.3400 0.4116 0.8931
0.6066 0.3841 0.8915 0.6096 0.7013 0.4947
0.3729 0.7230 0.1621 0.6537 0.0011 0.3888
0.1241 0.9864 0.7059 0.3734 0.9895 0.0768

a b~ W N -

43. Userow 1 to generate 6 observations from a:

a

Bernoulli distributionp = 0.4. Usetherange (O£ r £ 0.6) forOand (0.6<r £ 1)
for 1.

Binomial distribution withn=5and p = 0.4.

Geometric distribution with p = 0.4.

Poisson distribution with 6 = 2.

44. Userow 1 to generate 6 observations from a:

a

b.

Standard normal distribution.

Normal distribution with u = 100 and ¢ = 20.
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c. Lognorma distribution with a standard normal underlying distribution.

45. Useadl six numbers from each row for the following problems.

a. Simulate five observations of a Binomia random variablewithn=6andp = 0.4
by simulating Bernoulli trialswith p = 0.4.

b. Simulate five replications of the sum of six observations by summing six
simulated observations from the standard normal distribution.

c. Simulate five observations from agammadistribution withn =6 and A = 2 by
summing simulated exponentia random variables.

46. When evauating investments with cash flows at different pointsin time, it is common
to compute their net present worth (NPW). Consider an investment of the amount P
with annual returns i for k = 1,...,n, where nisthelife of the investment and Ik is
thereturnin year K. The NPW isdefined in terms of i and represents the investor's
minimum acceptable rate of return (MARR). If NPW 3 0, the investment provides a
return at least as great asthe MARR. |If NPW < 0, the investment failsto provide the
MARR. Your investment advisor tellsyou a particular investment of $1000 will
provide areturn of $500 per year for three years. Your MARR is 20% or 0.2.

a. Istheinvestment acceptable according to the NPW criterion.

b. The advisor adds the information that the life of the investment is uncertain.
Rather thereis auniform distribution on the life with p, = 0.2 for alifeof n = 1,
2, 3,4 and 5. Use the random numbers below to simulate ten replications of the
life and compute the NPW in each case.

0.5758 0.4998 0.3290 0.3854 0.6784 0.8579
0.5095 0.6824 0.3762 0.1351 0.2555 0.9773

Based on your simulation, what is the probability that the investment will yield the
MARR?

c. Theadvisor now tells you that the annual revenue per year is uncertain. Although
it will be the same each year, the revenue is normally distributed with a mean of
$500 and a standard deviation of $200. Use the random numbers below to
simulate ten observations of the annual revenue.

0.5153 0.3297 0.6807 0.0935 0.9872 0.6339
0.0858 0.3229 0.5285 0.4451 0.3177 0.1562

Combine the lives simulated with the revenues of this section to determine the
probability that the investment will yield the MARR.
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