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Reliability

Although the technological achievements of the last 50 years can hardly be disputed, there
is one weakness in all mankind's devices.  That is the possibility of failure.  What person
has not experienced the frustration of an automobile that fails to start or a malfunction of a
household appliance.  The introduction of every new device must be accompanied by
provision for maintenance, repair parts, and protection against failure. This is certainly
apparent to the military, where the life-cycle maintenance costs of systems far exceed the
original purchase costs.  The problem pervades modern society, from the homeowner who
faces the annoyances of appliance failures, to electric utility companies faced with the
potentially disastrous consequences of nuclear reactor failures.  The insurance industry
would not exist without the possibility of one type of failure or another.

A subject that is so important to many decisions in this world could hardly escape
quantitative analysis.  The name reliability  is given to the field of study that attempts to
assign numbers to the propensity of systems to fail.  In a more restrictive sense, the term
reliability is defined to be the probability that a system performs its mission successfully.
Because the mission is often specified in terms of time, reliability is often defined as the
probability that a system will operate satisfactorily for a given period of time.  Thus
reliability may be a function of time.

Estimating reliability is essentially a problem in probability modeling.  A system
consists of a number of components.  In the simplest case, each component has two states,
operating or failed.  When the set of operating components and the set of failed components
is specified, it is possible to discern the status of the system.  The problem is to compute
the probability that the system is operating -- the reliability of the system.

We use the concepts and methods of probability theory to compute the reliability of
a complex system.  In addition, we provide bounds on the probability of success that are
often much easier to compute than the exact reliability.  Although the chapter particularly
relates to reliability, the methods described here are appropriate to a much larger class of
problems associated with computing the probability of occurrence of complex events.

26.1 Reliability Models
A device or system is described as a collection of parts or components.  The system
operates successfully if all its components operate successfully (do not fail), but it may also
operate if a subset of components has failed.  The structure function is a model  that
determines the status of the system given the status of its components.  We use the
structure function to compute the system reliability.

The Structure Function

The system is a collection of n identifiable components performing some
function.  We define two operating states that relate to the system's ability to
perform its function.

• Success:  The system performs its function satisfactorily for a given
period of time, where the criterion for success is clearly defined.
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• Failure:  The system fails to perform its function satisfactorily.

The system reliability is the probability that a system performs its function
satisfactorily (i.e., the probability of success).

To provide a mathematical model of system reliability, we first
consider the components.  Like the system we also allow two possible
states for each component.  The success indicator for component i is the
binary random variable X i that indicates the status of component i .

X i = 1 implies component i is working

= 0 implies component i  is failed

The status vector  is the vector of component status indicators.

X  = (X 1, X 2,…, X n)

There are 2n possible realizations of this vector.

The structure function is a binary function that indicates the status of
the system (success or failure) given the status of each component.

(X 1, X 2,…, X n)  or  (X )

is the structure function, which has a value of 1 or 0 for each of the 2n

possible vectors X .   The structure function is a complete model of the
failure and success characteristics of the system.

Reliability

Given the structure function of the system, one can compute its reliability.
The component reliability, pi, is the probability that component i is
operating correctly.  The component failure probability, qi, is the probability
that a component has failed.  In terms of the success indicators,

pi = P{X i = 1} and qi = P{X i = 0} = 1 – pi.

When the probability of success or failure of a component does not depend
on the status of some other component, the components are said to be
independent.  The assumption of this chapter is that all components are
independent.

The probability that the system is operating correctly is the system
reliability, R.  It is the probability that the structure function is 1.

R = P{ (X ) = 1} = E[ (X )] (1)
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26.2 Simple Systems
Certain types of systems frequently arise in practice and serve to illustrate the idea of the
structure function.  If it is not possible to solve a problem by using the simple structures of
this section, it may be possible to solve the problem by viewing it as a combination of
simple structures.

Series System

A system in which all components must be operating for the system to be
successful is called a series system.  Alternatively, the failure of any one
component will cause the system to fail.  The word series does not imply
the physical arrangement of the components; rather it describes the response
of the system to the failure of one of its components.  The general structure
function of a series system with n components is

(X ) = X 1X 2 . . . X n (2)

All of the success indicators for the components must equal 1 for the
structure function to equal 1.

The reliability of a series system is the probability that all the
components in the system are successful.  For n independent components,
this is

R = p1p2 . . . pn (3)

For example, consider a stereo system with a compact disk (CD)
player, an amplifier, and two speakers (A and B).  Successful operation
requires all four components to work.  To construct the structure function of
the system we associate the indicator variables X 1, X 2,  X 3, and X 4  with
the CD player, amplifier, speaker A, and speaker B, respectively.  This is a
series system, so the structure function is as follows.

(X ) = X 1X 2X 3X 4

The reliabilities of the components are: CD player (p1 = 0.97), amplifier (p2
= 0.99), and each speaker (p3 = p4 = 0.98).  Since this is a series system,
the reliability is the product of the component reliabilities:

R = p1p2p3p4 = 0.9222.

Parallel System

A system for which the success of any one component is equivalent to the
success of the system is a parallel system.  Alternatively, all the components
must fail before the parallel system fails.  The structure function must have
the value 1 when the indicator variable of any one component is 1 and have
the value 0 only will all the indicator variables are all 0.  The function that
satisfies these conditions is

(X ) = 1 – (1 – X 1) (1 – X 2) . . . (1 -– X n). (4)

The reliability of a parallel system is the probability that all of the
components do not fail.  Assuming independence, we have
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R =  1 – (1 – p1) (1 – p2) . . . (1 – pn ) = 1 – q1q2  . . . qn. (5)

Consider again the stereo system with a revised criterion for
success.  For successful operation the CD player, amplifier and at least one
of the speakers must work.  To construct the function first note that the two
speakers comprise a parallel system.  Then the structure function for the
speaker combination is

s = 1 – (1 – X 3)(1 – X 4).

The speaker combination forms a series system with the CD player and
amplifier, so the complete structure function is

(X ) = X 1X 2 s = X 1X 2[1 – (1 – X 3) (1 – X 4)].

To compute the reliability of the system, first compute the reliability
of the parallel system of speakers.

Rs = 1 – (1 – p3)(1 – p4) = 1 – (0.02)(0.02) = 0.9996.

The speaker combination forms a series system with the CD player and
amplifier, so the total reliability is

R = p1p2Rs = (0.97)(0.99)(0.9996) = 0.9599.

With the more liberal definition of success, the reliability has increased over
the series system.

k-out-of-n System

This system is successful if any k out of the n components are successful.

(X ) = 





1, if  ∑
i=1

n
 X i ≥ k

 

0,  i f  ∑
i=1

n
 X i <  k

 (6)

This illustrates a structure function that is not a simple polynomial
expression but involves a logical condition.

To compute the reliability, assume that all components have the
same reliability, pi = p for all i.  Then the reliability of the system is the
probability that k or more components are successful.  Because of the
independence assumption, we can the binomial distribution to compute the
reliability.

R = 
n

i

 

 
 

 

 
 p i(1− p)n −i

i = k

n

∑ (7)
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For example, a space vehicle has three identical computers operating
simultaneously and solving the same problems.  The outputs of the three
computers are compared, and if two or three of them are identical, that result
is used.  This is called a majority vote system, and in this mode one of the
three computers can fail without causing the system to fail.  This is a two
out of three system.  Identifying the success or failure of each of the
computers with the variables X 1, X 2,  and X 3,  the function is written:

(X ) = 


1, if  X 1  +X 2 + X 3 ≥ 2

0,  if  X 1  +X 2 + X 3 <  2  

Alternatively, the structure function written in polynomial form is

(X ) = 1 – (1 – X 1X 2) (1 – X 1X 3) (1 – X 2X 3)

Any combination of two or more X i  set equal to 1 will cause this function
to assume the value 1, while fewer than two will result in a 0 value.

With the reliability of each computer equal to 0.9, we use the
binomial distribution to compute the system reliability.

R = 
3

i

 

 
 

 

 
 (0.9)i(0.1

i = 2

3

∑ )3−i

=  3(0.9)2(0.1) + (0.9)3 = 0.972.

The reliability of the combination of three computers is much greater
than that of an individual.  This is an example of the use of redundancy to
increase reliability.  Since only one computer is required to perform the
function, the other two are redundant from a functional point of view.  They
do play an important role, however, in increasing the reliability of the
system.

The independence of failures is important here.  If some failure
mechanism causes all three computers to fail simultaneously, the reliability
improvement will not be realized.  For example, if all three computers used
the same program and the program had an error, the combination of results
will certainly be no better than any one of the individual results.  The use of
redundancy is common in systems for which failure has particularly severe
consequences, such as in the space program or for very complex systems
with many components.

Reliability as a Function of Time

Often the reliability of a component is given as functions of time.  For
example, a common assumption is that components have an exponential
distribution for time to failure.  In this case the component reliability is

p(t) = 1 – P{failure time ≤ t) = e – t.
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The parameter  is called the failure rate of the component and is given in
units of failures per unit time.  This distribution for failure time implies that
the probability that the component fails in the next small interval of time is
independent of how long the component has been working.  For this
distribution, age is not the determinant of failure.  It is often adopted for
electronic components, and is also appropriate when the component itself a
is acomplex system of many parts.  After the system has been in operation
for some time many of the parts will have failed and been replaced.  The
system becomes a mixture of old and new parts, and the failure rate
approaches a constant.

One of the advantages of the constant failure rate assumption is
obtained with a series system.  In this case, the system reliability is

R(t ) = p1p2
 . . . pn = (e – 1t)(e – 2t) . . . (e – nt)

= exp − i t
i=1

n

∑
 

 
  

 

 
  (8)

The system failure rate is the sum of the component failure rates.

Other failure probability distributions are appropriate for other
classes of components.  In common use is the Weibull distribution that
models increasing failure rates with age.  When component reliabilities vary
with time, so must the system reliability.  In such cases, we use the time
varying component reliabilities, p(t) in the system reliability function.
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26.3 Complex Systems
If the system structure is not one of the simple forms, it becomes difficult to compute the
exact reliability.  To deal with the more general situation, we introduce a graphical network
model in which it is possible to determine whether a system is working correctly by
determining whether a successful path exists through the system.  The system fails when
no such path exists.  We present both exact and approximate methods for computing the
reliability.  The methods are based on the dual concepts of minimal cuts or minimal paths of
the network.

Coherent System

A system characteristic that plays an important role in the subsequent
analysis is coherency.  A coherent system has the property that when the
system is successful for some status vector X , it remains successful if some
components of X  change from 0 to 1.  Alternatively, if the system is failed
for some status vector X , it remains failed if some components of X  are
changed from 1 to 0.  More formally, a coherent system has the property
that when X  and Y are two status vectors such that Y ≥ X ,

(Y) ≥ (X ).

For a coherent system, repairing a failed component cannot cause a
working system to fail.  Most real systems have this characteristic including
the simple systems given in the previous section.

The Network Model

We describe the system as a directed network consisting of nodes and arcs,
as illustrated in Fig. 1.  One node is defined as the source (node A in the
figure), and a second node is defined as a sink (node D).  Each component
of the network is identified as an arc passing from one node to another.  The
arcs are numbered for identification.  A failure of a component is equivalent
to an arc being removed or cut from the network.  The system is successful
if there exists a successful path from the source to the sink.  The system is
failed if no such path exists.  The reliability of the system is the probability
that there exist one or more successful paths from the source to the sink.

A

B

C

D
1

2

3

4

5

Figure 1.  Network describing a system of five components
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To describe the reliability of this system, we define the concepts of
path, minimal path, cut, and minimal cut for the network.  A path for the
network is a set of components, such that if all the components in the set are
successful, the system will be successful.  For example, the set of all
components is a path.

A minimal path is a set of components that comprise a path, but the
removal of any one component will cause the resulting set to not be a path.
In other words, if all the components in a minimal path are successful while
all other components have failed, the system will be successful.  If any one
of the components in the minimal path subsequently fails, the system will
fail.  In terms of the network model, the minimal path corresponds to a
simple path from the source to the sink in the network.  In the example the
sets {1, 4}, {1, 3, 5}, {2, 5} are minimal paths.  The set {1, 3, 4} is a
path, but not a minimal path.  Arc 3 can be removed from the set and the set
will still be a path.

A cut is a set of components such that if all the components in the
cut fail, while all other components are successful, the system will fail.
Again, the set of all components is a cut.

The minimal cut is a set of components that comprise a cut, but the
removal of any one component from the set causes the resulting set to not be
a cut.  In the network a minimal cut breaks all simple paths from the source
to the sink.  From Fig. 1 we observe that the minimal cuts are: {1, 2}, {1,
5}, {2, 3, 4}, and {4, 5}.

Structure Function in Terms of Minimal Paths

Knowledge of the complete set of minimal cuts or minimal paths makes it
possible to derive the structure function of a complex system represented by
the network model.  Once we have the structure function we show how to
obtain exact and approximate estimates of system reliability.

We first determine the structure function in terms of the set of
minimal paths.  Let P be a set of components comprising a minimal path.
Using X i as an indicator of the success of component i , the event of a
successful path is the binary function

Xi
i∈P
∏

where 
i∈P
∏ means product over the set P.   The event of a failed path is

1− Xi
i ∈P
∏

 

 
  

 

 
  

Let P1, P2, … , Pk be the collection of all minimal paths of the
network.  The system is successful if all the minimal paths do not fail.
Then the structure function is

p(X ) = 1 – 1− Xi
i ∈P1

∏
 

 
  

 

 
   1− Xi

i∈P2

∏
 

 
  

 

 
  • •• 1− Xi

i ∈Pk

∏
 

 
  

 

 
  (9)
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To illustrate, the network of Fig. 1 has the minimal paths

P1 = {1, 4}, P2 = {1, 3, 5}, P3 = {2, 5}.

The structure function for this system from Eq. (9) is

p(X ) = 1 – (1 – X 1X 4) (1 – X 1X 3X 5) (1 – X 2X 5). (10)

Setting the indicators of a minimal path to 1 causes the structure function to
be 1.  For example, setting X 1 and X 4 both to 1 makes the term on the right
of Eq. (10) equal to 0.  The value for the structure function, regardless of
the other indicators, is then 1.

Structure Function in Terms of Minimal Cuts

The structure function can be also constructed with knowledge of the set of
minimal cuts.  Let C  be a set of components comprising a minimal cut.  The
event that all components in the cut fail is

1 − Xi( )
i∈C
∏

The event that all the cut components do not fail is

1 − 1− X i( )
i ∈C
∏

Let the collection of minimal cuts for the system be C1, C2,…, Ck.  The
system is successful if none of the minimal cuts fail:

C(X ) = 1− (1− Xi )
i∈C1

∏
 

 
  

 

 
   1− (1− Xi )

i∈C2

∏
 

 
  

 

 
  • •• 1− pi (1− Xi)

i ∈Ck

∏
 

 
  

 

 
  (11)

Illustrating again with the example of Fig. 1, the minimal cuts of the
network are

C1 = {1, 2}, C2 = {1, 5}, C3 = {2, 3, 4}, and C4 = {4, 5}.

Using Eq. (11) we determine the structure function

C(X ) = [1 – (1 – X 1) (1 – X 2)] [1 – (1 – X 1) (1 – X 5)]

           [1 – (1 – X 2) (1 – X 3) (1 – X 4)] [1 – (1 – X 4) (1 – X 5)]

The structure function obtained with the minimal cuts does not look very
much like that obtained with the minimal paths.  They do however provide
the same information.  It can be shown that

p(X ) = C(X ) for all X .
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Computing the Exact Reliability

Starting from either of the structure functions defined above, one can
multiply through the factors to obtain a sum of terms such that each term is a
product of factors having the form X i or (1 – X i).  The manipulation of the
formulas uses binary arithmetic which recognizes that

X iX i = X i,  X i + X i  = X i,  X i(1 – X i) = 0,  X i + (1 – X i) = 1.

Manipulating Eq. (10) obtained using the minimal paths for the example, we
have the following result.

p(X ) = 1 – (1 – X 1X 4) (1 – X 1X 3X 5) (1 – X 2X 5)

=  X 1X 4 + X 1X 3X 5 + X 2X 5 – X 1X 3X 4X 5 – X 1X 2X 4X 5

– X 1X 2X 3X 5 + X 1X 2X 3X 4X 5

Once in the expanded format, we substitute pi for X i  and qi for (1 –
X i) to obtain an exact expression for the system reliability.  Substituting pi
for X i in the preceding expression, the reliability equation for the system is

R = p1p4 + p1p3p5 + p2p5 – p1p3p4p5 – p1p2p4p5 – p1p2p3p5 + p1p2p3p4p5.

The problem of finding the exact reliability is made difficult by the large
number of minimal cuts and paths for most networks.

Examples

We illustrate the minimal cut and path approach for determining the system
reliability with the simple systems of Section 26.2.  More complex cases are
in the exercises at the end of the chapter.

Example 1:  Series System

 A system has four components in series with reliabilities

p1 = 0.97,  p2 = 0.99,  p3 = p4 = 0.98.

 We will find the system reliability with both the cut and path approaches.

The network for the series system is shown in the figure.  The
source is A and the sink is E.  The component reliabilities are shown in the
Fig. 2.

A B C D
1 2 3 4

E
(0.97) (0.99) (0.98) (0.98)

Figure 2.  Network for a series system
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By observation we note that the system has a single minimal path.

P1 = {1, 2, 3, 4}

Using this path, the structure function can be written according to Eq. (9).

p(X ) = 1 – (1 – X 1X 2X 3X 4) = X 1X 2X 3X 4 .

The reliability of the system is obtained by substituting pi for X i in this
expression.

R = p1p2p3p4 = 0.9222

Alternatively, we can derive the reliability from the cuts of the
system.  Again by observation we note that there are four minimal cuts.

C1 = {1}, C2 = {2}, C3 = {3}, C4 = {4}

Using Eq. (11), the system structure function is given below.

c(X ) = [1 – (1 – X 1)][1– (1 – X 2)] [1– (1 – X 3)] [1 – (1 – X 4)]

= X 1X 2X 3X 4

As expected, the same structure function is obtained.

Example 2: Series - Parallel System

Now we only require that components 1, 2, and either component 3 or 4
must work for system success.  The network for this case is shown in the
Fig. 3.  The network graphically illustrates that components 3 and 4 are
now in parallel and the pair is in series with components 1 and 2.  Node A
is the source and node D is the sink.

A B C D
1 2

3

4

(0.97) (0.99)

(0.98)

(0.98)

Figure 3.  Network for a series-parallel system

To derive the structure function we note that the minimal paths are

P1 = {1, 2, 3}, and P2 = {1, 2, 4}.

Using Eq. (9), the structure function is

p(X ) = [1 – (1 – X 1X 2X 3 )] [1 – (1 – X 1X 2X 4)].
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After the arithmetic is performed, we get

p(X ) = X 1X 2X 3 + X 1X 2X 4 – X 1X 2X 3X 4.

Because the structure function is now in the form of a sum of terms,
the reliability is easily determined by substituting pi for X i .

R = p1p2p3 +p1p2p4 – p1p2p3p4

= (0.97)(0.99)(0.98) + (0.97)(0.99)(0.98) – (0.97)(0.99)(0.98)(0.98)

= 0.9599

which is the same as the answer obtained previously.

The results can also be found using the minimal cuts.  The cuts are

C1= {1}, C2 = {2}, C3 = {3,4}.

Using Eq. (11),

C(X ) = [1 – (1 – X 1)] [1 – (1 – X 2)] [1 – (1 – X 3)(1 – X 4)].

Performing the arithmetic, we obtain

C(X ) =1 – (1 – X 1) – (1 – X 2) – (1 – X 3) (1 – X 4) + (1 – X 1)(1 – X 2)

+ (1 – X 1) (1 – X 3) (1 – X 4) +  (1 – X 2) (1 – X 3) (1 – X 4)

– (1 – X 1) (1 – X 2) (1 – X 3) (1 – X 4).

The reliability function is obtained by replacing (1 – X i ) with qi ,

c(X ) = 1 – q1 – q2 – q3q4 + q1q2 + q1q3q4 + q2q3q4 – q1q2q3q4

= 1 – 0.03 – 0.01 – (0.02)(0.02) + (0.03)(0.01)

   + (0.03)(0.02)(0.02) + (0.01)(0.02)(0.02)

   – (0.03)(0.01)(0.02)(0.02)

= 1 – 0.0401 = 0.9599.

Example 3: 2-out-of-3 System

A system has three computers of which at least two must work for
successful operation.  The reliability of each computer is 0.9.  Find the
reliability of the system.

We identify the components of the system with the indices 1, 2, and
3.  This is a two out of three system.  There is no way to draw a network
for this system in which each component appears only once.  It is possible
to enumerate the minimal cuts and paths using simple logic.  The minimal
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requirement for system operation is that two of three computers must work,
so the minimal paths are

P1 = {1, 2}, P2 = {1, 3}, and P3 = {2, 3}.

The minimum requirement for system failure is that two components fail, so
the minimal cuts are

C1 = {1, 2}, C2 = {1, 3}, and C3 = {2, 3}.

In this interesting case, the sets defining the minimal cuts and the minimal
paths are the same.

Using Eq. (9) we derive the structure function

p(X ) = 1 – (1 – X 1X 2) (1 – X 1X 3) (1 – X 2X 3).

From this expression, we obtain the structure function and the reliability.

p(X ) = X 1X 2 +X 1X 3 +X 2X 3 – 2X 1X 2X 3

R = p1p2 + p1p3 + p2p3 – 2p1p2p3

When all three components have the same reliability, p,

R = 3p 2 – 2p 3.

This expression is equivalent to the one obtained earlier for the two out of
three system.  A different but equivalent expression can be derived using the
minimal cut approach.

Computational Considerations

This procedure can be used to derive the structure function and associated
reliability function for any system for which the set of minimal paths or
minimal cuts can be identified.  There are two difficulties with this
approach.  The first is determining the set of minimal paths or cuts.  In
general, the system with many components will have many cuts, and it is a
difficult computational problem to determine the complete set.  In our
examples, we have simply used observation; however, that procedure will
hardly be satisfactory for a network of reasonable size.  The second
problem is to construct and evaluate the structure and reliability functions.
In general, if there are k  cuts or paths, the corresponding reliability
equation will have 2k – 1 terms.  Because of these difficulties it is common
to approximate the reliability function of complicated systems.  This is the
subject of the next section.

For a complicated network it is often beneficial to look for
subsystems of components that form simple structures such as the series,
parallel, or k of n structures.  The reliabilities of these subsystems can be
determined first and the subsystem replaced with a single equivalent
component.  Even subsystems not having a simple structure can be analyzed
with the methods of this section with the  subsystem replaced by a single
equivalent component whose reliability is the reliability of the subsystem.
When as many subsystems as possible have been reduced in this fashion,
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the resultant network will be much smaller and will perhaps have a simple
structure or be amenable to further reduction.  This decomposition approach
is often effective in significantly reducing computational effort.

Complex structures will have different numbers of minimal cuts and
paths.  Because an exact analysis can be done using either, it is best to use
the method with the smallest number.  For instance, a series system with n
components has n cuts but only one path.  A parallel system with n
components has n paths but only one cut.
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26.4 Bounds on Reliability
One of the reasons why it is difficult to compute the exact reliability of a complex system
concerns the difficulty in manipulating the structure function to obtain the proper form.
The minimal paths and cuts defined in the previous section can be used to obtain upper and
lower bounds on the exact reliability in a fashion that makes it unnecessary to do these
manipulations.

Upper Bound on Reliability

This bound is obtained by computing the probability that at least one
minimal path is successful with the added assumption that paths fail
independently.  The upper bound is

RU = 1 – 1− pi
i ∈P1

∏
 

 
  

 

 
   1− pi

i∈P2

∏
 

 
  

 

 
  • •• 1− pi

i ∈Pk

∏
 

 
  

 

 
  (13)

where P1, P2, … , Pk are the minimal paths of the network.  The
inaccuracy in Eq. (13) arises from the fact that, in general, paths are not
independent since some components are common to more than one path.

Lower Bound on Reliability

This bound is obtained by computing the probability that every minimal cut
is successful, with the added assumption that cuts fail independently.  Thus
the lower bound is

RL = 1− (1− qi )
i∈C1

∏
 

 
  

 

 
   1− (1− qi)

i∈C2

∏
 

 
  

 

 
  • •• 1− pi (1− qi)

i ∈Ck

∏
 

 
  

 

 
  (14)

where C1, C2,…, Ck are the minimal cuts of the network.  Similarly, the
inaccuracy in Eq. (14) arises from the fact that, in general, cuts are not
independent since some components are common to more than one cut.

Example 4

Consider the 2-out-of-3 problem with components 1, 2, and 3.  The
minimal paths of the system are

P1 = {1, 2},  P2 = {1, 3} and P3 = {2, 3}.

The minimal cuts of the system are

C1 = {1, 2},  C2 = {1, 3} and C3 = {2, 3}.

Using the paths with Eq. (13), we obtain

RU = 1 – (1 – p1p2) (1 – p1p3) (1 – p2p3).

Using the cuts with Eq. (14), we obtain
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RL =  (1 – q1q2) (1 – q1q3) (1 – q2q3).

Assuming all components have equal reliabilities of 0.9 (p = 0.9, q = 0.1),
the bounds become

RU = 1 – (1 – p2)3 = 1 – (0.19)3 = 0.9931

RL = (1 – q 2)3 = (0.99)3 = 0.9703.

This compares to the exact reliability calculated earlier, R = 0.972.

Modeling

In the preceding example, the lower bound appears to be closer to the exact
reliability than the upper bound.  The lower bound will usually be a better
approximation when component reliabilities are high (> 0.9).  With high
component reliabilities it is more likely that a single cut will cause failure
rather than a collection of two or more.  The assumption of independence of
cuts will cause less inaccuracy in this case.  The cut approximation
converges to the true reliability as the component reliability approaches 1.
The upper bound approximation will usually be a better approximation
when the component reliability is very low.  In most studies, component
reliabilities are high implying that a lower bound is a conservative measure
of reliability.  Therefore, from a practical point of view, the minimal cut
approximation is the more important of the two.
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26.5 Exercises

1. A missile complex has four subsystems: the radars, the missile, the computer control
devices, and the human operators.  Four radars are provided, of which three are
required for successful operation.  The complex has only a single missile.  There are
three computers operating in a majority vote arrangement.  There are two human
operators, one of whom must be capable of firing the missile.  Write the structure
function for this system consisting of 10 components.

2. A student drives to school each day over the same route.  She prides herself on her
ability to control the speed of her car so she never has to stop at a traffic signal.  She
calls her trip successful if she can accomplish that feat.  If there are six traffic signals
on his route, show the structure function for the system of traffic signals for this
particular driver.  How would the structure function change if the student were willing
to change her criterion of success to allow a pause at no more than one signal?

3. To increase the likelihood that a vaccine for a disease will be discovered, the
government awards independent study contracts to four drug firms.  Surely, they say,
one of the companies will make the discovery.  If success is defined as the discovery
of the vaccine, what is the structure function for this system?

4. Compute the reliability of the system described in Exercise 1 when the reliabilities of
the various components are given in the following table.

Component Radar Missile Computer Human

Reliability 0.9 0.96 0.98 0.95

5. The Defense Department would like to increase the reliability of the missile system
described in Exercise 4.  Evaluate the system reliabilities for the changes proposed
below.  The changes are not cumulative.

a. Add another radar with the same reliability.  Three radars are required for
successful operation.

b.   Add a third human operator.  Only one is required.

c.  Add an entire duplicate missile system at a nearby location.  Only one of the two
systems must work for mission success.

6. Three computers are operated in parallel with a majority vote taken of their outputs to
determine the proper action.  Find the reliability of the system as a function of time.
Assume the time for failure of each of the computers has an exponential distribution
with a mean time between failures of 50 hours.  The failure rate ( ) is the reciprocal
of the mean time between failures.  Plot a curve of the reliability as a function of time
over the range 0 to 100 hours.  Plot the curves for the system and for a single
computer.  Comment on the effects of this arrangement of redundancy over time.

7. Assume that all three computers in Exercise 6 must be in working order for system
success.  With the failure rates used in Exercise 6, plot system reliability over the
range in time of 0 to 100 hours.  What is the failure rate of the system?
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8. Assume that the three computers in Exercise 6 are arranged in parallel and that only
one must be working for system success.  With the failure rates used in Exercise 6,
plot system reliability over the range in time of 0 to 100 hours.

9. The figure below represents a series-parallel system.  The components in each parallel
set all have the same reliability as shown on the figure.

8

9

1

3 6

2

4

5

7

p = 0.9                         p = 0.8                        p = 0.95

A B C D

Find the system reliability as instructed.

a. Construct the reliability function by enumerating the minimal paths.

b. Construct the reliability function by enumerating the minimal cuts.

c. First evaluate the parallel structures and then combine the results to form a series
system.

10. Find the system reliability for the flow network with both the cut and path methods.

A

B

D

EC

(0.7)

(0.6)

(0.5)

(0.5)

(0.6)

(0.8)

(0.9)

11. Compute the upper and lower bound approximations for the network in Exercise 9 and
compare them with the exact reliability.

12. Compute the upper and lower bound approximations for the network in Exercise 10
and compare them with the exact reliability.
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13. For the 2-out-of-3 system considered in Example 3, compute the upper and lower
bound approximations as a function of time.  Assume each component has an
exponential distribution for time to failure with a failure rate of 0.02/hour.  Plot a
curve showing the upper and lower bound approximations together with the exact
reliability curve over the time range from 0 to 100 hours.

14. Repeat Exercise 13 if the system is a 1-out-of-3 system.

15. Repeat Exercise 12 if the system is a 3-out-of-3 system.

16. The figure shows a system with nine components and corresponding reliabilities.
Components 3, 4, and 5 form a 2-out-of-3 system.  Write the structure function for
this system.  Compute the exact probability that a successful path will exist from A to
B.  Compute the minimal cut and minimal path approximations.

1 2

3

4

5

6

7

8

9

(0.90)

(0.95)

(0.96) (0.98)

(0.8)

(0.8)

(0.8)

(0.96)

(0.92)

A B

17. A fuse is used to protect an electrical circuit from overload.  The fuse can fail in two
modes, short and open.  If it fails in the short mode, the fuse will not interrupt the
circuit when it is activated.  If it fails in the open mode, the circuit will be interrupted
by the fuse itself.  Assume a single fuse has probabilities of open and short of qo and
qs, respectively.  The events of open and short are mutually exclusive.  Define success
in two ways: the system does not fail because of shorts, and the system does not fail
because of opens.

For the given arrangements shown in the figure, write structure functions for both
definitions.  Let the reliability be the probability that the system does not fail in either
mode.  Compute accurate reliabilities for each definition for success using qo = 0.05
and qs = 0.1.
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fusea.

fuse fuse

fuse

fuse

fuse fuse

fuse fuse

fuse fuse

fuse fuse

b.

c.

d.

e.

A B

A B

A B

A B

A B

18. The figure shows roads between two towns, A and B, in a mountainous area.  During
the winter, travel is difficult because of the threat of snow.  The probability that any
given road will be impassable is 0.6.  The conditions on the roads are independent.
Find the probability that there will be a passable route from A to B.  Roads can be
traveled in either direction.  Find the accurate probability and also the minimal cut and
minimal path approximations.

1

2

3

4

5

6

7

8

A B

19. The figure shows the pipe layout in a lawn sprinkler system.  Sprayers are located at
every intersection of the pipe and also at the corners of the system.  Thus there are 16
sprayers.  Two things can happen to a sprayer -- it can break off or it can get clogged.
If any one of the sprayers breaks off, a great stream of water will pour forth and the
system will have failed.  If one of the sprayers clogs, it will fail to water the lawn in
the immediate vicinity; however, adjacent sprayers can reach the affected areas.  The
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system is judged to be failed if any two adjacent sprayers are both failed.  For one
sprayer, let the probability of breakage be 0.01 and the probability of clogging be
0.05.  Find the reliability of the system (the probability that it does not fail in either
mode) using the minimal cut approximation.
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