
Statistics from Simulations

A.1 Statistical Inference and Estimation of Population
Parameters

When the goal is to estimate the parameter of some population (e.g., mean or variance),
the usual procedure is to design a probability sample to provide a sample statistic.  As an
example, we might estimate the parameter ‘true average cost’ of an inventory system
(population mean, ) with the statistic ‘average cost for 12 months’ (sample mean, x ); or

we might estimate the proportion of taxpayers whose income tax returns were audited by
the IRS in a particular year (population proportion, ) by using the proportion of a

random sample that were audited (sample proportion, p).  When a single number based
on a sample is used to estimate the population parameter ( x  for  or p for ), it is termed

a point estimate.  While such estimates are indispensable for calibrating a model, they
provide no insight into the extent of random sampling error.  Interval estimates, on the
other hand, allow us to specify the maximum expected error and associated probability
that a point estimate would diverge from the population parameter.

By realizing that the sample statistic is only one of many possibilities, it is not
difficult to conceptualize the existence of a distribution of possible sample statistics,
termed the sampling distribution of a statistic.  Now for the crux of sampling theory.  If
the shape or form of the sampling distribution can be specified, then it would be possible
to base errors on probability judgments.  For example, if p is used to estimate , then the

sampling distribution of p turns out to be binomial (which can be approximated by the
normal curve if the sample size n is sufficiently large), assuming the conditions
underlying the binomial process are met.  If x  is used to estimate , then the sampling

distribution of x  turns out to be approximately normally or t-distributed.  Given a
specified shape for the sampling distribution, interval estimates are made easily, as
illustrated below.

Sampling and Experimental Design

For any study that requires data, there is a target set of objects about which information
regarding some attribute is desired.  This set of objects is termed the universe or
population.  Illustrative attributes and populations include the following: the probability
distribution for “interarrival times” (attribute) for “all possible arrivals at the emergency
room of a hospital” (population); the average “response velocity for a particular type of
emergency vehicle” (attribute) among “all the possible responses in a given section of the
city” (population); the expected “total cost of producing any given number of items over
some planning horizon” (attribute) from among the “set of items of the same type which
will be, could be, or would have been produced” (population).

If every item of the population is to be examined, a census is to be undertaken; if
some subset of the population is to be examined, then a sample will be undertaken.
Inferential statistics is the area of study which is concerned with the making of



generalizations or inferences about some population characteristic based on the results of
a sample.  The motivation for sampling is strong.  In many cases, a census either is not
feasible (e.g., an infinite population) or is impractical (e.g., determination of the attribute
requires the destruction of the object).  In most cases, sampling is considerably less costly
with little or no sacrifice in estimation error.

The method of selecting a sample is a field of study in itself requiring substantial
expertise.  Essentially, samples can be selected in one of two ways: judgment samples
and probability samples.  In the first approach, an individual (or set of individuals) selects
items which are “known” to be typical with respect to the desired attribute(s); in the latter
approach, the selection of items is based on a plan that requires a knowledge of the
probability that any given item will be selected.  Only for the latter can we estimate the
degree of sampling error -- a measure of the variability in estimating a statistic such as
the mean.  Of the various methods for selecting probability samples (e.g., simple random,
systematic, cluster, stratified random, and variants or combinations thereof), we will
exclusively deal with simple random sampling where each element of the population has
an equal probability of being selected.

Sampling Distribution of the Mean

Let X be a random variable with mean X .  If x1, x2, . . . , xn represent independent and
identically distributed random variates (i.e, a random sample of size n) drawn from the
distribution of X, then the sample mean (point estimate for the population mean, X ) can
be calculated as follows.

  x =
xi

i =1

n

∑
n

(A.1)

If n is sufficiently large (say, above 30) and the population standard deviation is known,
then we have the result guaranteed by the central limit theorem (CLT):

If X1, X2, . . . , Xn are i.i.d. random variables from a population with E[X] = X and

Var[X] = X
2 , then the distribution of X =

1

n
Xii =1

n∑  approaches a normal

distribution with

E[X ] = X (A.2)
and

Var[X ] =
X 

2 = X
2 n (A.3)

as n approaches infinity.

In short, this allows us to establish a probability range of X.  Carefully note that the CLT

is operative if and only if (i) the variates are independently and identically distributed, (ii)
n is sufficiently large, and (iii) σX is known.  Condition (i) and the derivation of (A.3)

require that sampling is from an infinite population or from a finite population with



replacement; otherwise, a so-called finite population correction factor must be applied to
(A.3):

X 
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2

n

N − n

N − 1
 
 

 
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If n is small or X is unknown, then the sampling distribution of X  will have a t-

distribution, providing the population for X is normally distributed.  Note that the
normality of X  as specified by the CLT makes absolutely no assumptions about the
distribution of X.  The application of the t-distribution, however, requires that X itself be
normally distributed.  If X

2  is unknown (the usual case), it is estimated by the unbiased
sample variance:

ˆ 
X
2 =

(xi − x )2

i=1

n

∑
n −1

. (A.5)

If n is large or small, X  is unknown, and X is not normally distributed, then

statistical theory does not tell us how to compute reliable estimates of X.  For practical

purposes, however, a large n (above 50) under these conditions will give satisfactory
results.

Confidence Intervals

Once x  and the standard error of the mean, 
X 
, are determined, the confidence interval

and maximum error for X are given by

X = x ± z
X 

(A.6)

or

X = x ± t ˆ 
X 

(A.7)

as the case may be, where ˆ 
X 
 is the estimated standard error when (A.5) is used in place

of  X
2  in (A.3) or (A.4).  If X is known, then the maximum error  for a given level of

confidence can be found from

= z
X 
  or  = z X / n

when (A.3) applies.  It follows that

n =
z X

 
  

 
  
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(A.8)

provides the required sample size which satisfies a given maximum error and confidence
level.

Example (Response Velocity)



In computing typical police response times, a velocity of 20 mph is used for a major
thoroughfare in Austin, Texas.  Suppose this value represents a point estimate (i.e., x  =
20) for the mean of the population of all possible response velocities based on a simple
random sample of 61 observations (n = 61).  The population variance ( X

2 ) is unknown,
but has been estimated as ˆ 

X
2  = 4 using (A.5).  Seasonal factors based on shift, day of

week, and month of year have been controlled to ensure as much as possible that random
variates are independent and identically distributed.  The assumption of a random sample
was further buttressed by a previous study which showed that response velocities do not
vary significantly with individual drivers.  Finally, a chi-square test on the null
hypothesis is that the random sample of 61 observed velocities came from a normal
distribution was accepted.  This cleared the way for using the t-distribution as
representative of the X  distribution.

Given that the population is infinite, we substitute ˆ 
X
2  for X

2  in (A.3), which

gives ˆ 
X
2  = 4 61, or ˆ 

x  = 0.26 mph.  For degrees of freedom, df = n − 1 = 60 and a 0.95

level of confidence (that is, 0.025 of the area lies in each tail), the value of t is 2.0; hence,
according to (A.7),

X = 20 ± (2.0)(0.26)

= 20 ± 0.52.

This means that there is a 95% is probability that the estimate of 20 mph is within 0.52
mph of the population (true) average velocity.  Alternatively, the 95-percent confidence
interval for X is 19.48 to 20.52 mph.  These confidence limits can be used as extreme

values of this parameter for performing sensitivity analysis.

Follow-up exercises:

1. Determine the confidence limits if n = 21, all other things being equal.  Conclusion?

2. Estimate maximum error for X if x  = 50, n = 30, and X = 10.  Use 95% and 99%

confidence intervals.

3. Determine the required sample size if X = 1.41 and an error of no more than 0.5 mph
with 99% confidence is desired.  What sample size must be taken if  = 0.1?  What

conclusion can you draw as to behavior of n as  varies?



A.2 Chi-Square Goodness-of-Fit Test
In most studies involving random phenomena, one of the first steps is to characterize the
randomness by trying to associate a known probability distribution to it.   In this section,
we illustrate the use of the chi-square distribution to test the hypothesis that an empirical
distribution based on some random variable represents a sample from some theoretical
distribution.

Given an empirical probability distribution with observed frequencies (oi) and a
theoretical probability distribution with expected frequencies (ei), both with k categories
as illustrated in Table A-1, the statistic

s =
(oi − ei )

2

eii =1

k

∑  (A.9)

approaches a chi-square ( 2) distribution with df = k − m degrees of freedom as the

sample size n approaches infinity (m stands for the number of parameters or restrictions
that apply in the calculations).  In order to construct the empirical distribution, we divide
the n observations into classes or intervals of roughly equal size.  As a rule, n ≥ 50 gives

satisfactory results as long as all classes have more than five members; otherwise,
additional refinements must be incorporated in the test.  Note that small values for s
imply “good” fits between the empirical and theoretical distributions; for example, if oi  =
ei  for all i, then the fit would be perfect (giving s = 0).

Table A-1.  Setup for chi-square test

Range of random
variable

ai ≤ X ≤ bi

(class i)

Empirically observed
frequency

(oi )

Theoretically expected
frequency

(ei )

1 o1 e1

2 o2 e2

:̇ :̇ :̇

k ok ek

The idea then is to evaluate (A.9) utilizing the expected frequencies for some
assumed theoretical distribution.  The null hypothesis would state that the empirical
distribution represents a sample of observations from the assumed theoretical
distribution.  If this were true, then differences between observed and expected
frequencies would be due only to sampling error and values for s would be small; on the
other hand, a large value for s would raise the suspicion that the empirical data are
inconsistent with the assumed underlying distribution, which implies a rejection of the
null hypothesis.



Example (Emergency Room Service)

Consider the quality of service in an emergency room.  A simple random sample of 100
cases has been selected from among a large number of records, and the attribute “time to
treat a patient” was recorded as shown in Table A-2.  The data have been smoothed to
ensure the elimination of identifiable “noise.”  Furthermore, a previous statistical study
showed no appreciable differences in the distribution of treatment times for various
physicians.

Table A-2.  Data and computations for exponential service distribution

Service time For exponential pdf
per patient Observed with  = 2.5 Expected

(hours) frequency P(X ≤ ai ) P(X ≤ bi ) P(ai ≤ X ≤ bi ) frequency

(ai ≤ X ≤ bi ) (oi ) F(ai) F(bi ) F(bi )−
F(ai)

(ei )
(oi − ei )

2

ei

0.0 0.2 38 0.0000 0.3935 0.3935 39.35 0.05

0.2 0.4 25 0.3935 0.6321 0.2386 23.86 0.06

0.4 0.6 17 0.6321 0.7769 0.1448 14.48 0.44

0.6 0.8 9 0.7769 0.8647 0.0878 8.78 0.01

0.8 1.0 6 0.8647 0.9179 0.0532 5.32 0.09

1.0 1.2 5 0.9179 0.9507 0.0328 3.28

Over 1.2      0      0.9507 1.0000 0.0493 4.93
1.26

100 1.91

Using the definition of expected value, we calculate the sample mean as 0.4
hours.  Suppose we formulate the null hypothesis that the observed distribution is a
sample from an exponential distribution with E[X] = 0.4.  Furthermore, suppose we
specify a probability of no more than 0.01 for the wrong decision of rejecting a true
hypothesis (this establishes a 0.01 level of significance (  = 0.01) or right-tail area and a

corresponding value for the critical value of 2 as in Fig. A-1).

For the exponential distribution, E[X] = 1/  so  = 1/0.40 = 2.5.  Thus the

assumed CDF given by

F(x) = 1 − e–2.5x.

We can now determine the probability of a theoretical observation within any specified
category or class (ai , bi ) in the table.  For example, in the third class (a3 = 0.4, b3 = 0.6),
we have



Pr{0.4 ≤ X ≤ 0.6} = (1 − e-2.5(0.6)) − (1 − e-2.5(0.4))

= 0.7769 − 0.6321

= 0.1448.

Expected frequencies for each class are now determined as the product of the total
number of observations (n = 100) and the probability of an observation in that class.  For
the third class, e3 = 100(0.1448) = 14.48.  Calculations for each class are shown in Table
A-2.  Note that the last two classes have been combined to avoid an expected frequency
of less than five in any class.  This changes the number of categories to k = 6.

The last column illustrates the calculation of s = 1.91 according to (A.9).  For df =
6 − 2 = 4 (two parameters, n and , were needed so m = 2), the critical value of 2 that

gives a 0.01 level of significance is 13.28 (See Fig. A-1).  Note that critical values can be
found in any statistical text.  Since s < 13.28, we conclude that the exponential

distribution with  = 2.5 is a reasonably theoretical distribution to represent this process.

f( 2)

2

df = 4

13.28

Rejection region

Figure A-1.  Chi-square distribution for hypothesis test

Follow-up exercises:

1. Plot the empirical and theoretical CDF's for this example and compare.

2. Test the null hypothesis that the empirical distribution in Table A-2 is a sample from
an underlying normal distribution with E[X] = 0.4 and Var[X] = 0.16.  Use 1% and
5% levels of significance.



3. Test the null hypothesis that the empirical distribution in Table A-3 for n = 100 is a
sample from an underlying Poisson distribution.  Use a 5% level of significance.  For
k = 7, calculate

E[X] = x i f (x i)
i =1

k

∑
to determine  based on E[X] = t, where X is a Poisson r.v. with pdf

f(x) = 
( t)x e− t

x!
,  x = 0, 1, 2, …

Table A-3.  Distribution of emergency room arrivals

Number of arrivals
per hour, x

Number of one-
hour time periods

pdf

f(x)

CDF,

F(x)

0 10 0.10 0.10

1 28 0.28 0.38

2 29 0.29 0.67

3 16 0.26 0.83

4 10 0.10 0.93

5 6 0.06 0.99

6      1    0.01 1.00

n = 100 1.0



A.3 Kolmogorov-Smirnov Goodness-of-Fit Test
This test compares the continuous CDF, F(x), of a uniformly distributed random variable
X over the interval [0,1] to the empirical CDF, Sn(x), of a sample of size n.  By definition,

F(x) = x,  0 ≤ x ≤ 1.

If the sample from a random number generator is u1, u2, . . . , un, the empirical CDF,

Sn(x) is defined as follows

Sn(x) =  
Number of u1,…,un that are ≤ x

n

As n becomes larger, Sn(x) should become a better approximation to F(x), provided that

the null hypothesis is true.

The Kolmogorov-Smirnov test is based on the largest absolute difference between
Sn(x) and F(x) over the range of the random variable X.  If we let D = max |Sn(x) – F(x)|,

the sampling distribution of D is known and is tabulated as a function of N below.  Table
A-4 provides one-tailed values of d (n) such that Pr{max[ |Sn(x) – F(x)| ] > d (n)} = ,

where  is desired level of significance.



Table A-4.  Critical values for one-tailed K-S test

Level of significance ( )Sample
size
(n) 0.20 0.15 0.10 0.05 0.01

1 0.900 0.925 0.950 0.975 0.995

2 0.684 0.726 0.776 0.842 0.929

3 0.565 0.597 0.642 0.708 0.828

4 0.494 0.525 0.564 0.624 0.733

5 0.446 0.474 0.510 0.565 0.669

6 0.410 0.436 0.470 0.521 0.618

7 0.381 0.405 0.438 0.486 0.577

8 0.358 0.381 0.411 0.457 0.543

9 0.339 0.360 0.388 0.432 0.514

10 0.322 0.342 0.368 0.410 0.490

11 0.307 0.326 0.352 0.391 0.468

12 0.295 0.313 0.338 0.375 0.450

13 0.284 0.302 0.325 0.361 0.433

14 0.274 0.292 0.314 0.349 0.418

15 0.266 0.283 0.304 0.338 0.404

16 0.258 0.274 0.295 0.328 0.392

17 0.250 0.266 0.286 0.318 0.381

18 0.244 0.259 0.278 0.309 0.371

19 0.237 0.252 0.272 0.301 0.363

20 0.231 0.246 0.264 0.294 0.356

25 0.21 0.22 0.24 0.27 0.32

30 0.19 0.20 0.22 0.24 0.29

35 0.18 0.19 0.21 0.23 0.27

> 35 1.07

n

1.14

n

1.22

n

1.35

n

1.63

n


