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Stochastic Optimization

Operations research has been particularly successful in two areas of decision analysis: (i)
optimization of problems involving many variables when the outcome of the decisions can
be predicted with certainty, and (ii) the analysis of situations involving a few variables
when the outcome of the decisions cannot be predicted with certainty. The earlier chapters
of this book have identified this dichotomy as deterministic optimization versus stochastic
analysis.  The optimization of problems in which the outcomes are uncertain, the subject of
this chapter, is still in its infancy so there is still much room for improvement in
computational methods.

We have already considered optimization and uncertainty in several places.  A
sequential process in which decisions yield uncertain results admits a stochastic dynamic
programming model as in Section 20.6.  Linear programming was used in Chapter 24 to
find the optimal mixed strategy in a zero-sum game.  The approach to optimization for most
stochastic processes is explicit enumeration as in the queueing system decision models of
Section 17.5.

In this chapter, we consider two decision models that explicitly incorporate the
probability distributions of random variables.  Both are solved with linear programming
(LP).  Although we will see that rather simple situations lead to large LP models, the
general availability of efficient LP algorithms may make the solution of such problems
practical.

27.1 Decisions with Uncertainty
There are many situations in which optimization models are used that could be more
realistically modeled with the explicit incorporation of random variables.  For example
consider a problem in water resources planning.  With appropriate assumptions the
decisions associated with a river basin can be represented with a large multiperiod network
model.  The decision variables are the amounts of water to release into the channels and
canals of the river system in each of a number of time periods.  The periods are
interconnected by variables representing storage in reservoirs.  The parameters of the model
are the rainfall amounts at various times and locations and the demand for water in the cities
and industries of the river basin.  The estimates of rainfall may come from historical
records and demands may be based on economic projections.  Solving such a model with
deterministic optimization provides planners with information about the capabilities of the
system for meeting demands.  By examining various alternatives for basin development,
the model aids in the design process.  The model is an abstraction, however, because the
future rainfalls and demands are obviously unknown.  The model would be more accurate
and the decisions determined through optimization would be more reasonable if the
characteristic of uncertainty were explicitly incorporated.

Deterministic Solutions

The optimization algorithm determines the best solution given the
parameters of the model. The modeling and decision analysis process is
illustrated in Fig. 1 where the shape labeled situation represents the real
problem under consideration. Various assumptions and abstractions are
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applied, including the assumption of deterministic information, to obtain a
mathematical model. The model is input to a computer where an algorithm
determines the optimal decision, represented by the vector x . We use the
vector notation to indicate that the decision generally has many dimensions.

Figure 1.  The deterministic approach to decision making

The fault with this approach is that the decision x  is optimum for the
model and not the situation. It is usually readily apparent to the person
charged with the task of implementing the decision, that x  is not at all
appropriate for application to the situation. The primary reason for this lies
in the assumption of deterministic parameters. When the situation involves
uncertainty or risk, the kind of decision taken is quite different than if it
does not. Real decision makers hedge against various possible futures. For
the water planning example, the person releasing water from a reservoir
rarely makes decisions for a known future, but hopes to provide the
flexibility required to adapt to a variety of futures. The algorithm operating
on a deterministic model is not troubled by doubt, but gives the best
decision for the information given.

The Scenario Model

A more accurate description of the decision process is shown in Fig. 2,
where the situation gives rise to a model of the present with the decisions
that must be made immediately represented by the vector x . Models are also
provided for several alternative futures, or scenarios. The parameters for the
futures are each deterministic but they differ from each other. For the water
planning example, the present decisions are the amounts to release through
the various dams in the system. The models for the scenarios describe
various possibilities for water supplies and demands that will occur in the
future. Associated with each scenario is a decision vector, yk for future k.
This model recognizes that future decisions depend on the decisions made
today. They must be included explicitly because they affect the evaluation of
the present decision, x . Perhaps probabilities can be attached to each
scenario if sufficient statistical data is available. The figure shows pk as the
probability of future k.
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Scenario 1

Scenario 2

Scenario K

Figure 2.  Decision problem with several possible futures

The What-if Approach

When the deterministic assumption is obviously not appropriate, analysts or
managers typically turn to a what if approach for arriving at a solution. The
what if approach is illustrated in Fig. 3. The analysis proceeds by
considering each scenario in turn and finding the best present and future
decisions for each case. For example, given scenario 1, the optimal present
decision is x1 and the optimal future decision given x1 is y1.  After the what
if analysis, we have the best decision for each of the possible scenarios, x1,
x2,…, xK.  How should the scenario decisions be combined to obtain one
decision x  that is best for all possible futures? One might suggest averaging
the K  scenario decisions using the probabilities pk, but the average solution
is often infeasible and rarely optimal.

Cricket Software   

Scenario 1

Scenario 2

Scenario K

Decision  = x1

Decision  = x2

Decision  = xK

Figure 3.  The what if analysis of alternative futures

Example 1

Consider a town with a demand for 10 units of water.  The town receives its
water from a river authority at no cost.  The authority has natural water in
the amount b, but it can also purchase water from a neighboring state for $5
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per unit.  If city does not receive 10 units of water, there is a penalty cost
for demand not met.  The cost is $2 per unit for the first five units and $4
per unit for the next five units.  Any amount greater than 10 units of water
provided to the town has no value.  If the authority has excess water, it is
released to down stream users for a benefit of $1 per unit.

The network model for the situation is shown in Fig. 4.   The
brackets associated with the nodes indicate the flow that must enter or leave.
The [+b] on the authority node indicates that b will enter at the authority.
The [–10] at the town node indicates that 10 units will leave at the town.
The upper and lower bound of x on the arc from authority to town shows
the amount allocated. The arcs from the source model the cost of shortages
at the town and the availability of purchased water for the authority. The
arcs into the sink carry the amount of excess provided to the town and the
releases down stream from the authority.  The source node can provide any
amount of flow and the sink node can absorb any amount.

[External flow]
(lower bound, upper bound, cost)

[+b ]

Figure 4.  Network model of the example problem

The authority must select an amount to allocate to the town, shown
as x in Fig. 4, in a manner that minimizes total system cost.  This is a trivial
problem if b is known.  The optimal solution is

x = b if b ≤ 10 and x = 10 if b > 10.

Unfortunately, the natural supply b is uncertain. It may be either 0, 3, 6, 9,
or 12 with equal probability.  The probability distribution for water available
is in Table 1.

Table 1. Probability Distribution for Water Available

 Available (b) 0 3 6 9 12

Probability P(b) 0.2 0.2 0.2 0.2 0.2

Because the allocation x must be made before b is known, a number
of new questions arise.  If x > b, the authority must purchase the amount (x
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– b) to fulfill its pledge.  If x < b, the town will have unsatisfied demand
while water is sent down stream.  Certainly, the decision problem becomes
more difficult.

To use a deterministic approach, we might solve the problem for the
average availability.  This average is µb = 6.  The solution is to allocate all
six units to the town.  The town has 4 units of unsatisfied demand for a cost
of 8.  This solution, however, does not model the uncertainty present.  If b
happens to be more than 6, the town experiences unnecessary shortage.  If
b is less than 6, the authority will have to buy water, when it is less
expensive for the town to experience shortage.

We might try the what-if approach illustrated in Fig. 3.  The present
decision is the amount to allocate, x. The scenarios are the five possible
future values of b. The future decisions are the arc flows after the value of b
is realized.  Table 2 shows the results for the five scenarios.

Table 2.  Deterministic Scenario Solutions

Scenario Probability bk xk

1 0.2 0 0
2 0.2 3 3
3 0.2 6 6
4 0.2 9 9
5 0.2 12 10

The table does not give much guidance on the single decision we
must make.  Using the probability distribution, the expected value of x is

E{x} = 0.2(0 + 3 + 6 + 9 + 10) = 5.6

Although this solution is not far from the optimum, it is not the solution that
minimizes the expected cost so there is really no rational basis for its use.
We find the optimal solution in the next section.



6 Stochastic Optimization

27.2 Stochastic Programming
More rational decisions are obtained with stochastic programming.  Here a model is
constructed that is a direct representation of Fig. 2. The present decisions x , and the future
decisions, y1, y2,…, yK, are all represented explicitly in a linear programming model.
When this model is solved, the optimal values of all these decisions are determined. The
optimal values for the present decisions, x*, maximize the expected benefit (in a statistical
sense) over all scenarios included in the model.  The solution has the hedging and
flexibility characteristics typically appearing in real decision situations and should be much
more acceptable to decision makers than the results for a deterministic model.

Decision Making with Recourse

With the situation of Fig. 2, we have a two stage problem.  An initial
decision x  is followed by a second stage decision y .  Some random
occurrence comes between the first and second stages.  This problem is
often called decision making with recourse.  The initial decision is made in
the presence of uncertainty, but we recover from the possibly ill effects of
the realization of the randomness with the recourse decision.

The Recourse Problem

Consider a problem that has the linear programming format except the right
side vector b is originally not known with certainty.  Rather it is a random
vector with discrete realizations b1, b2,…, bK.  The probabilities of the
realizations are given as p1, p2,…, pK.  If the decision maker can wait until
the value of b becomes known, the optimal decision is determined by
solving the usual linear programming model

Minimize cx

subject to Ax = b

x  ≥ 0

The model has n variables and m constraints.

The decision process requires, however, that the original decision,
x , be made before the realization of the random variable.  After b is known,
a second decision y , called the recourse decision, is required to adjust the
decision x  so that the constraints are satisfied and the objective is
minimized.  The problem of determining y  is called the recourse problem.

Minimize qy

subject to My = b - Ax

y  ≥ 0

The recourse problem has n0 variables in the vector y  and m constraints.
The vector q defines the recourse costs.  The matrix M describes the
interaction between the original decisions x  and the recourse decisions y .

The problem is to determine the original decision vector x  that will
minimize the original objective value plus the expected recourse costs.
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Minimize cx  + E[qy | My = b – Ax, y  ≥ 0]

subject to x  ≥ 0

Here, E[.] is the expected value taken over the random vector b.

Linear Programming Formulation

This problem has the linear programming model below (Dantzig and
Madansky [1961]).

Minimize cx + p1qy1 + p2qy2 + .. . + pKqyK

subject to Ax + My1 = b1

Ax + My2 = b2

    M       M
Ax + MyK = bK

x  ≥ 0 ,   y1 ≥ 0 ,   y2 ≥ 0 ,…, yK ≥ 0

This linear programming model has n + Kn0 variables and Km
constraints.  The constraint matrix has a dual block angular form.  The
model can be generalized by allowing the recourse matrix M and the
recourse cost q to vary with the realizations.  Let the matrix realizations be
M1, M2,…, MK, and the objective vectors be q1, q2,…, qK, correspond to
the K  right side vector possibilities.  We can also require the original
variables to satisfy linear constraints that are not affected by uncertainty.
These are

A0x  = b0.

With these additions, the linear programming formulation becomes

Minimize cx + p1q1y1 + p2q2y2 + .. . + pKqKyK

subject to A0x = b0

Ax + M1y1 = b1

Ax + M2y2 = b2

    M       M
Ax . . . + MKyK = bK

x  ≥ 0 ,   y1 ≥ 0 ,   y2 ≥ 0 ,…, yK ≥ 0

In any specific case, the size of this linear program is large because of the
large number of possible realizations of the random events that determine
the characteristics of the recourse problems. We have, however, a



8 Stochastic Optimization

deterministic equivalent of the stochastic problem that can be solved by
linear programming.

Example 2

For the example introduced in the last section we write the linear
programming model written as if b was a known.

Minimize z = 0x –1y1 + 5y2 + 2y3 + 4y4 + 0y5

x + y1 – y2 = b

x + y3 + y4 – y5 = 10

0 ≤ x,  0 ≤ y1 ≤ 12,  0 ≤ y2 ≤ 12,  0 ≤ y3 ≤ 5,  0 ≤ y4 ≤ 5,  0 ≤ y5 ≤ 12

The objective is to minimize cost. The y variables are the arc flows indexed
according to the arc numbers in Fig. 4.  The x variable is the flow for arc 6.
We differentiate it because this is the present decision that must be made
before the random variable is realized.  The constraints are conservation of
flow requirements at the authority and town nodes.  Conservation is not
required at the source and sink nodes.

The stochastic programming model is formed by defining recourse
variables for each realization. Thus let

yjk = the flow in arc j in realization k

Now the deterministic linear program is

Minimize z = 0x + 0.2( –1y11 + 5y21 + 2y31 + 4y41 + 0y51)

+ 0.2( –1y12 + 5y22 + 2y32 + 4y42 + 0y52)

+ 0.2( –1y13 + 5y23 + 2y33 + 4y43 + 0y53)

+ 0.2( –1y14 + 5y24 + 2y34 + 4y44 + 0y54)

+ 0.2( –1y15 + 5y25 + 2y35 + 4y45 + 0y55)
subject to

real. 1 x + y11 – y21 = 0
x + y31 + y41 – y51 = 10

real. 2 x + y12 – y22 = 3
x + y32 + y42 – y52 = 10

real. 3 x + y13 – y23 = 6
x + y33 + y43 – y53 = 10

real. 4 x + y14 – y24 = 9
x + y34 + y44 – y54 = 10

real. 5 x + y15 – y25 = 12
x + y35 + y45 – y55 = 10
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0 ≤ y11 ≤ 12, 0 ≤ y21 ≤ 12, 0 ≤ y31 ≤ 5,  0 ≤ y41 ≤ 5,  0 ≤ y51 ≤ 12

0 ≤ y12 ≤ 12, 0 ≤ y22 ≤ 12, 0 ≤ y32 ≤ 5,  0 ≤ y42 ≤ 5,  0 ≤ y52 ≤ 12

0 ≤ y13 ≤ 12, 0 ≤ y23 ≤ 12, 0 ≤ y33 ≤ 5,  0 ≤ y43 ≤ 5,  0 ≤ y53 ≤ 12

0 ≤ y14 ≤ 12, 0 ≤ y24 ≤ 12, 0 ≤ y34 ≤ 5,  0 ≤ y44 ≤ 5,  0 ≤ y54 ≤ 12

0 ≤ y15 ≤ 12, 0 ≤ y25 ≤ 12, 0 ≤ y35 ≤ 5,  0 ≤ y45 ≤ 5,  0 ≤ y55 ≤ 12

Solving this model we obtain,

z* = 14.6 and x* = 5.

The solution for the recourse variables is shown in Table 3.

Table 3. Solution for the Recourse Variables
Table 3.  Recourse Solution

Realization, k bk y1k y2k y3k y4k y5k

1 0 0 5 5 0 0
2 3 0 2 5 0 0
3 6 1 0 5 0 0
4 9 4 0 5 0 0
5 12 7 0 5 0 0

The solution that minimizes the expected cost over all realizations is to
allocate 5 units to the town. The town experiences a shortage of 5 units with
a cost of $10. In the event that the natural supply is greater than 5, the
excess is released down stream. When the natural supply is less than 5, the
shortage is made up by purchasing water. We have found this solution with
a deterministic linear programming model, but it is a rather large model for
such a small problem, 26 variables and 10 constraints.

Although this problem is a network flow model for any fixed value
of x, the stochastic programming problem no longer has the network
structure.  The model must be solved as a general linear program.

Multistage Models

The approach can be adapted to multistage problems, as illustrated in Fig. 5.
Here, alternative futures are broken down into a series of periodic
decisions.  An illustration is the water planning problem suggested at the
beginning of the chapter. This is not a two stage problem, but decisions
must be made in each of a number of future periods. The periods may
represent months and the decisions are the amounts to release in each
month. Uncertain events are revealed in a periodic manner. Thus the present
decision x  determines releases in the first month.  These releases must be
made when all future supplies and demands are uncertain.  After the first
month passes, part of the uncertainty is removed; specifically, the supplies
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and demands in the first month are known. Now the decisions of the second
month must be made. The sequential decisions and realizations of uncertain
events are represented explicitly in the model, so the optimal decisions at the
present time can be determined.

Figure 5.  Multistage stochastic model

The difficulty with the stochastic programming model is its size and
the corresponding computational difficulty required to obtain a solution. A
model representing K  scenarios of the type shown in Fig. 2 is K  times
larger than the similar deterministic problem of Fig. 1. Models for the
multiperiod problem of Fig. 5 are p × K  times the size of the deterministic
problem when there are p periods with K  scenarios at each period.  A
second difficulty is the structure of the mathematical programming model.
When the what if problem has the structure of a network flow programming
model, the stochastic programming model will be a general linear program,
a much harder model to solve.
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27.3 Markovian Decision Processes
Chapters 12 - 16 described a stochastic process called the Markov chain.  The procedures
described in those chapters allow one to analyze the system by computing such measures as
the steady-state probabilities.  This section adds the dimension of decision making to the
Markov chain.  Now, at every step of the process, before the transition to the next state is
determined, a decision must be made that affects the transition probabilities.  This section
explains how the problem is stated and solved as a linear program.  There are number of
interesting applications of the model and the associated solution procedures.

The Decision Model

The Markov chain is defined by states numbered 0 through m – 1.  For each
pair of states i and j, there is a transition probability pij.  The transition
probabilities are arranged into the transition matrix P.  Steady-state
probabilities are

 = ( 0, 1,..., m–1)

They can be found by solving the set of linear equations

(P – I) = 0   and j
j =0

m −1

∑ = 1.

We add a decision dimension to this problem by defining for each
state i a decision di, where di is an index ranging from 1 through K
representing possible actions one might take while in state i.  A policy R
specifies a decision for each state.

{d0(R), d1(R) ,...,dm–1(R)}

Decisions affect the transition probabilities, so we must define the
transition probability as a function if the decision.  Thus pij(k) is the
probability of a transition from state i to state j if one makes the decision k.
The values of pij(k) are data that must be provided for every pair of states
for every decision.

We also define the cost incurred if decision k is made while in state i
as Cik.  The steady state probabilities and the cost of operating the Markov

chain depends on the policy R.  We define (R) as the steady-state
probabilities with policy R, and C(R) as the expected cost of operation with
policy R.

C(R) = Cik i(R)| k = di(R)[ ]
i = 0

m −1

∑

The goal is to find the policy that minimizes the expected cost.

The decision matrix, D, is an m × K  matrix with component Dik
defined as the probability that the decision k will be taken, given that the
system is in state i.

Dik = P{decision = k | state = i},  i  = 0,..., m–1 and k  = 1,..., K.
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The decision matrix completely defines a decision policy.  Although the
model allows a mixed policy1, the optimal solution is always a pure policy.
The components of the optimal decision matrix are either 0 or 1.

Linear Programming Model

Given the data pij(k)and Cik for all values of i, j and k, this problem is
modeled and solved as a linear program.  The general formulation follows
with an example provided in the next section.

The decision variables of the linear program are

yik = P{state is i and the decision is k},  i  = 0,...,m–1 and k  = 1,...,K

The objective is to minimize the expected cost of operation.

Minimize z = Cik yik
k =1

K

∑
i = 0

m −1

∑
The first set of constraints requires that the steady-state probabilities sum to
1.

yik
k =1

K

∑
i = 0

m −1

∑ = 1

The second set of constraints are equations define the steady-state
probabilities.

y jk
k =1

K

∑ – yik pij (k
k =1

K

∑
i = 0

m −1

∑ ) = 0,  j = 0,1,... , m–1

Finally, we require nonnegativity for the probabilities.

yik ≥ 0,  i  = 0, 1,..., m–1 and k = 1, 2,..., K

After the linear program is solved, the results in more usable form are
obtained by computing the decision probabilities.  The steady state
probability i is the sum over all possible decisions in state i.

i = yik
k =1

K

∑ ,  i = 0,1,... , m–1

The decision probabilities are

Dik = yik  / i   for i = 0,1,... , m–1 and k = 1, 2,..., K

Example 3

Consider again the computer repair problem that was described in Section
12.1.  An office has two computers that are used for word processing.  It
has been observed that when both are working in the morning, there is a
30% chance that one will be failed by evening and a 10% chance that both

                                                
1 Mixed policies are defined in the context of game theory in Chapter 24.
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will be failed.  If it happens that only one computer is working in the
morning, there is a 20% chance that it will be failed by evening.

With one computer failed, some of the office work must be sent to a
typing service at a cost of $20 per day.  With both machines failed, the cost
of the service increases to $100 per day.

The technician charges $40 to fix a computer and it takes 1 day for
the repair.  When he is called in the morning he picks up the broken
machines immediately and guarantees their return by the next morning.   He
charges a fixed fee of $50 for a pick up.  This fee is independent of how
many need repair.

The office manager must decide when to call the technician.  Should
she call after the first machine fails or wait until both have failed?  Which
policy yields the smallest average cost?

Solution

There are really only two possible decisions at any state.

1. Do not call the technician

2. Call the technician

Thus we have K  = 2 with the alternatives numbered as above.

The state of the system is the number of failed computers observed
after the technician has returned repaired machines.  There are three states
for this problem:

0. No computers have failed

1. One computer has failed

2. Two computers have failed

The obvious decision for state 0 is not to call the technician.  Thus d0 = 1.
When the system is in state 2, the optimal plan is to call the technician (the
machines must eventually be repaired so there is no reason to delay), so d2
= 2.  State 1 involves the only question with both alternatives as reasonable
possibilities.

We use a linear programming model to solve this problem.  Since
there are two decisions and three states, there are potentially six decision
variables.

y01 = P{no computers have failed and technician is not called}

y02 = P{no computers have failed and technician is  called}

y11 = P{one computer has failed and technician is not called}

y12 = P{one computer has failed and technician is  called}

y21 = P{two computers have failed and technician is not called}

y22 = P{two computers have failed and technician is  called}

We delete y02 and y21 as impractical alternatives.
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We define Pi (k) as row i of the transition matrix if decision k is
selected.  For the four remaining decisions, we have

P0(1) = [ 0.6 0.3 0.1 ]

P1(1) = [ 0 0.8 0.2 ]

P1(2) = [ 0.8 0.2 0 ]

P2(2) = [ 1 0 0 ]

The cost of operation given the state and decision can also be computed.

C01 = 0, there is no cost if no typewriters are failed

C11 = 20, this is the cost of the typing service with one failed

C12 = 110, this is the cost of the typing service plus the cost of
repairing the machine

C22 = 230, this is the cost of the typing service plus the cost of
repairing two machines

Using general notation, we have the following linear programming model.

Minimize z  = C01y01+ C11y11+ C12y12+ C22y22

subject to y01+ y11+ y12+ y22  = 1

y01 – [p00(1)y01 + p10(1)y11+ p10(2)y12+ p20(2)y22] = 0

y11 + y12 – [p01(1)y01 + p11(1)y11+ p11(2)y12+ p21(2)y22] = 0

y22 – [p02(1)y01 + p12(1)y11+ p12(2)y12+ p22(2)y22] = 0

y01 ≥ 0, y11 ≥ 0, y12 ≥ 0, y22 ≥ 0

Substituting the probabilities and costs, gives

Minimize z = 0y01+ 20y11+ 110y12+ 230y22

subject to y01 +y11 + y12+ y22 = 1

0.4y01 – 0.8y12 – y22= 0

– 0.3y01 + 0.2y11 + 0.8y12 = 0

– 0.1y01 – 0.2y11 + y22 = 0
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y01 ≥ 0,  y11 ≥ 0,  y12 ≥ 0,  y22≥ 0.

with optimal solution

z* = 43.56, y *01 = 0.678,  y*
11 = 0, y*

12 = 0.254, y*
22 = 0.068.

From this result, we compute the steady -state probabilities

 0 = 0.678,  1 = 0.254,  2 =0.068,

and the optimal decisions

 D01 = 1,  D11 = 0,  D12 = 1,  D22 =1.

The optimal policy is to call the technician if there are either one or two
failed machines.  The expected cost per day is $43.56.
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27.4 Exercises

Section 27.2

1. A manufacturer has supplies of some commodity at three warehouses which he
routinely ships to three customers.  The unit shipping costs, the supplies at the
warehouses, the revenue at each customer, and three possible demand levels are
shown in the table.

Shipping costs Supply
–––––––––––––––––––––––––––––––––––––––––
Warehouse 1 10 20 18 20
Warehouse 2   8 15 12 15
Warehouse 3 13 17 19 15
–––––––––––––––––––––––––––––––––––––––––
Revenue 20 25 27
–––––––––––––––––––––––––––––––
Low demand  5 13 10
Medium demand 10 20 16
High demand 12 23 20
–––––––––––––––––––––––––––––––

The manufacturer must ship products to the customers, but their demands are not
known with certainty.  Based on past experience each customer has been given three
demand levels: low, medium and high, as shown in the table.  For this example, all
customers will have the same level of demand but the level is determined with the
following probabilities.

P{low} = 0.2,  P{medium} = 0.5,  P{high} = 0.3

If the amount shipped to a customer is less than the amount demanded, sales are lost.
The cost of a lost sale is the lost revenue.  If the amount shipped to a customer is more
than the amount demanded, the excess product must be sold at a discount.  The
revenue for such a sale is $5.  Not all supplies need be shipped.  Determine how much
to ship to each customer to maximize expected profit.

2. Solve Exercise 1 using the following data.

P{low} = 0.5,  P{medium} = 0.3,  P{high} = 0.2.

3.  Consider again Exercise 1, but allow any shortages to be made up with emergency
shipments from the warehouses using any supplies that remain after the original
shipments.  The cost of an emergency shipment is $5 more than the original shipping
cost shown in the table.   Shortages can also result in lost sales as originally proposed.
Solve this problem.

Section 27.3

4. Consider the example in Section 27.3, but assume that the company buys another
computer for a total of three machines.  When all three machines are working in the
morning there is a 32% probability that one will have failed by the evening, a 10%
probability that two will have failed, and a 3% probability that all three will have
failed.  As before, when two are working in the morning, there is a 30% chance that
one will have failed by the evening and a 10% chance that both will have failed.  If it
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happens that only one computer is working in the morning, there is a 20% chance that
it will have failed by evening.

With one computer out of commission, some of the office work must be sent to a
typing service at a cost of $10 per day.  With two machines out of commission the
cost will be $25, and with all three machines failed the cost of the service increases to
$100 per day.

The technician charges $40 to fix a computer and it takes 1 day for the repair.  When
he is called in the morning he picks up the failed machines immediately and will
guarantee their return by the next morning.  He charges a fixed fee of $50 to pick up
the machines.  This fee is independent of how many need repair.  With a minimum
cost policy, how many machines must be out of commission before the office
manager calls the technician?

5. This is an abstract problem in which there are three states.  In each state, one of three
decisions must be made.  The matrices P(k) show the transition probabilities,
assuming the same decision k is made in every state.  This is not a limitation,
however, since the policy may use a different decision for each state.  Also shown is
the decision cost matrix C.  Set up and solve a linear program to determine the optimal
decision in each state.  Also find the steady-state probabilities.  The goal is to
minimize steady state average cost.

P(1) = 








0.0 0.3 0.7

0.9 0.1 0.0

0.2 0.0 0.8
 

P(2) = 








0.1 0.6 0.3

0.7 0.2 0.1

0.1 0.3 0.6
 

P(3) = 








0.3 0.5 0.2

0.6 0.1 0.3

0.2 0.4 0.4
 

C = 








10 15 20

15 20 25

20 25 30
 

6. A dealer selling high-priced cars faces the following weekly demand distribution.

Demand 0 1 2

Probability 0.1 0.5 0.4

The dealer looks at the inventory at the end of each week and must determine if an
order should be placed and, if so, how many cars to order.  The cars arrive 1 week
after the order is placed.  There may be a total of no more than five cars either in
inventory or on order.  The cost of placing an order is $600, independent of how
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many cars are ordered.   If there is a demand for a car and there is no inventory, the
sale is lost with a lost profit of $2000.   The cost associated with an unsold car in
inventory at the end of a week is $200.  Set up this problem as a Markov decision
process and find the optimal policy.

7. A queueing system has three service channels.  Using a 5-minute study period, the
following probabilities have been determined for the number of arrivals during the
period.

Arrivals 0 1 2 3

Probability 0.1 0.3 0.4 0.2

For simplicity assume that the arrivals occur at the beginning of the period.  These
arrivals will enter the system until the number in the system is 10.  When this occurs
the arrivals will balk.  The cost of a balking customer is $100.

The number of customers who leave the system during a period depends on the
number of channels open and the number in the system at the beginning of the period.
The probability distribution for the number of service completions given that there are
sufficient customers in the system is given below for the various numbers of
channels.

Completions 0 1 2 3 4

One channel open 0.3 0.5 0.2 0 0
Two channels open 0.1 0.2 0.4 0.3 0
Three channels open 0 0.1 0.2 0.5 0.2

If there aren't enough customers in the system to utilize the full capacity of a particular
channel configuration, the probabilities for the excess capacities are combined with the
probability for the specific number of customers in the system.  For instance, if there
are only two customers in the system at some period, the service probability
distributions appears as below.

Completions 0 1 2 3 4

One channel open 0.3 0.5 0.2 0 0
Two channels open 0.1 0.2 0.7 0 0
Three channels open 0 0.1 0.9 0 0

Let the charge for an open channel be $7 per period.  Let the waiting cost for a
customer be $2 for each whole period spent in the system.  You must determine a
policy for how many channels to open as a function of the number of customers in the
system.  Describe this problem as a Markov decision problem and solve it with a
linear programming code.
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