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Stochastic Optimization

Operations research has been particularly successful in two areas of decision analysis: (i)
optimization of problems involving many variables when the outcome of the decisions can
be predicted with certainty, and (ii) the analysis of situationsinvolving afew variables
when the outcome of the decisions cannot be predicted with certainty. The earlier chapters
of this book have identified this dichotomy as deterministic optimization versus stochastic
analysis. The optimization of problemsin which the outcomes are uncertain, the subject of
this chapter, isstill initsinfancy so thereis still much room for improvement in
computational methods.

We have aready considered optimization and uncertainty in several places. A
sequentia processin which decisionsyield uncertain results admits a stochastic dynamic
programming model asin Section 20.6. Linear programming was used in Chapter 24 to
find the optimal mixed strategy in azero-sum game. The approach to optimization for most
stochastic processes is explicit enumeration as in the queueing system decision models of
Section 17.5.

In this chapter, we consider two decision models that explicitly incorporate the
probability distributions of random variables. Both are solved with linear programming
(LP). Although we will see that rather smple situations lead to large LP models, the
genera availability of efficient L P agorithms may make the solution of such problems
practical.

27.1 Decisions with Uncertainty

There are many situations in which optimization models are used that could be more
realistically modeled with the explicit incorporation of random variables. For example
consider a problem in water resources planning. With appropriate assumptions the
decisions associated with ariver basin can be represented with a large multiperiod network
model. The decision variables are the amounts of water to rel ease into the channels and
canals of the river system in each of a number of time periods. The periods are
interconnected by variables representing storage in reservoirs. The parameters of the model
aretherainfall amounts at various times and locations and the demand for water in the cities
and industries of theriver basin. The estimates of rainfall may come from historical
records and demands may be based on economic projections. Solving such amodel with
deterministic optimization provides planners with information about the capabilities of the
system for meeting demands. By examining various aternatives for basin devel opment,
the model aidsin the design process. The model is an abstraction, however, because the
future rainfalls and demands are obviously unknown. The model would be more accurate
and the decisions determined through optimization would be more reasonableif the
characteristic of uncertainty were explicitly incorporated.

Deter ministic Solutions

The optimization agorithm determines the best solution given the
parameters of the model. The modeling and decision analysis processis
illustrated in Fig. 1 where the shape labeled situation represents the real
problem under consideration. Various assumptions and abstractions are
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Sochastic Optimization

applied, including the assumption of deterministic information, to obtain a
mathematical model. The model isinput to a computer where an algorithm
determines the optimal decision, represented by the vector x. We use the
vector notation to indicate that the decision generally has many dimensions.
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Figure 1. The deterministic approach to decision making

The fault with this approach is that the decision x is optimum for the
model and not the situation. It is usualy readily apparent to the person
charged with the task of implementing the decision, that x isnot at al
appropriate for application to the situation. The primary reason for thislies
in the assumption of deterministic parameters. When the situation involves
uncertainty or risk, the kind of decision taken is quite different than if it
does not. Real decision makers hedge against various possible futures. For
the water planning example, the person releasing water from areservoir
rarely makes decisions for a known future, but hopesto provide the
flexibility required to adapt to avariety of futures. The algorithm operating
on adeterministic model is not troubled by doubt, but gives the best
decision for the information given.

o0 Model

A more accurate description of the decision processis shown in Fig. 2,
where the situation gives rise to amodel of the present with the decisions
that must be made immediately represented by the vector x. Models are also
provided for several alternative futures, or scenarios. The parameters for the
futures are each deterministic but they differ from each other. For the water
planning example, the present decisions are the amounts to rel ease through
the various damsin the system. The models for the scenarios describe
various possibilities for water supplies and demands that will occur in the
future. Associated with each scenario is adecision vector, y, for futurek.

Thismodel recognizes that future decisions depend on the decisions made
today. They must beincluded explicitly because they affect the evaluation of
the present decision, x. Perhaps probabilities can be attached to each
scenario if sufficient statistical datais available. The figure shows p, asthe

probability of futurek.
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Figure 2. Decision problem with several possible futures

The What-if Approach

When the deterministic assumption is obviously not appropriate, analysts or
managers typically turn to awhat if approach for arriving at a solution. The
what if approach isillustrated in Fig. 3. The analysis proceeds by
considering each scenario in turn and finding the best present and future
decisions for each case. For example, given scenario 1, the optimal present
decision isx and the optimal future decision given x; isy . After thewhat

if analysis, we have the best decision for each of the possible scenarios, X 4,
X5, ..., Xy. How should the scenario decisions be combined to obtain one

decisionx that isbest for al possible futures? One might suggest averaging
the K scenario decisions using the probabilities p,, but the average solution

is often infeasible and rarely optimal.

Decision =X
Decision = x
Dhacisiyr =X L2 LA = Yo
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eCiSion : XK

Figure 3. Thewhat if analysis of aternative futures

Decision = ¥,

Decisions = Yy

Example 1

Consider atown with ademand for 10 units of water. The town receivesits
water from ariver authority at no cost. The authority has natural water in
the amount b, but it can a so purchase water from a neighboring state for $5
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per unit. If city does not receive 10 units of water, there is apenalty cost
for demand not met. The cost is $2 per unit for thefirst five unitsand $4
per unit for the next five units. Any amount greater than 10 units of water
provided to the town has no value. If the authority has excess water, it is
released to down stream users for a benefit of $1 per unit.

The network model for the situation isshown in Fig. 4. The
brackets associated with the nodes indicate the flow that must enter or leave.
The [+b] on the authority node indicates that b will enter at the authority.
The [-10] at the town node indicates that 10 units will leave at the town.
The upper and lower bound of x on the arc from authority to town shows
the amount allocated. The arcs from the source model the cost of shortages
at the town and the availability of purchased water for the authority. The
arcsinto the sink carry the amount of excess provided to the town and the
releases down stream from the authority. The source node can provide any
amount of flow and the sink node can absorb any amount.

[Externa flow]
(lower bound, upper bound, cost)

0

(o i,

[+b ] [-10]

(0,12,5) (0,12,0)

CSource) (0,>4) @

Figure 4. Network model of the example problem

The authority must select an amount to allocate to the town, shown
asx in Fig. 4, in amanner that minimizestotal system cost. Thisisatrivial
problem if b isknown. The optimal solutionis

x=bifb£ 10andx =10if b > 10.

Unfortunately, the natural supply b is uncertain. It may be either O, 3, 6, 9,
or 12 with equal probability. The probability distribution for water available
isin Table 1.

Table 1. Probability Distribution for Water Available

Avalable (b) o 3 6 9 12
Probability P(0) | 02 02 02 02 02

Because the allocation x must be made before b is known, a number
of new questions arise. If x > b, the authority must purchase the amount (x
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—b) to fulfill its pledge. If x < b, the town will have unsatisfied demand
while water is sent down stream. Certainly, the decision problem becomes
more difficult.

To use adeterministic approach, we might solve the problem for the
average availability. Thisaverageispy, = 6. Thesolutionisto allocate al

Six unitsto the town. The town has 4 units of unsatisfied demand for a cost
of 8. This solution, however, does not model the uncertainty present. If b
happens to be more than 6, the town experiences unnecessary shortage. |If
b islessthan 6, the authority will have to buy water, when it isless
expensive for the town to experience shortage.

We might try the what-if approach illustrated in Fig. 3. The present
decision isthe amount to allocate, x. The scenarios are the five possible
future values of b. The future decisions are the arc flows after the value of b
isrealized. Table 2 shows the results for the five scenarios.

Table 2. Deterministic Scenario Solutions

Scenario Probability bk Xk
1 0.2 0 0
2 0.2 3 3
3 0.2 6 6
4 0.2 9 9
5 0.2 12 10

The table does not give much guidance on the single decision we
must make. Using the probability distribution, the expected value of x is

E{x} =0.2(0+3+6+9+10)=5.6
Although this solution is not far from the optimum, it is not the solution that

minimizes the expected cost so thereisreally no rational basisfor its use.
We find the optimal solution in the next section.
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27.2 Stochastic Programming

More rationa decisions are obtained with stochastic programming. Hereamodel is
constructed that is adirect representation of Fig. 2. The present decisions x, and the future
decisions, y 1, Yo, ..., Y. areall represented explicitly in alinear programming model.
When this model is solved, the optimal values of all these decisions are determined. The
optimal values for the present decisions, x*, maximize the expected benefit (in astatistical
sense) over all scenariosincluded in the model. The solution has the hedging and
flexibility characteristics typically appearing in real decision situations and should be much
more acceptable to decision makers than the results for a deterministic model.

Decision Making with Recour se

With the situation of Fig. 2, we have atwo stage problem. Aninitial
decisionx isfollowed by a second stage decisiony. Some random
occurrence comes between the first and second stages. This problemis
often called decision making with recourse. Theinitial decisonismadein
the presence of uncertainty, but we recover from the possibly ill effects of
the realization of the randomness with the recourse decision.

The Recourse Problem

Consider a problem that has the linear programming format except the right
side vector b isoriginally not known with certainty. Rather it isarandom
vector with discrete readlizations b4, b, ..., b,. The probabilities of the

redlizations are given aspy, Py, ..., Py If the decision maker can wait until
the value of b becomes known, the optimal decision is determined by

solving the usual linear programming model
Minimize cx
subjectto Ax=Db
Xx30
The modd has n variables and m constraints.

The decision process requires, however, that the original decision,
X, be made before the realization of the random variable. After b is known,
asecond decision y, caled the recourse decision, isrequired to adjust the
decisionx so that the constraints are satisfied and the objectiveis
minimized. The problem of determiningy is called the recourse problem.

Minimize qy
subjectto My =b - Ax
yso0
The recourse problem has n, variables in the vector y and m constraints.

The vector q defines the recourse costs. The matrix M describes the
interaction between the origina decisionsx and the recourse decisionsy.

The problem is to determine the original decision vector x that will
minimize the original objective value plus the expected recourse costs.
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Minimize cx + E[qy [My=b — AXx,y 3 0]
subjectto x3 0

Here, E[-] isthe expected value taken over the random vector b.

Linear Programming Formulation

This problem has the linear programming model below (Dantzig and

Madansky [1961]).

Minimize cx +piqy; +pPdy,+ ...  +payg

subjectto Ax + My, =by
AX + My, =b,
AX +Myy = bK

X320, y7320, y,30,...,y,30

Thislinear programming model has n + Kng variables and Km

constraints. The constraint matrix has adual block angular form. The
model can be generalized by allowing the recourse matrix M and the
recourse cost g to vary with the realizations. Let the matrix realizations be
M4, Mo, ..., M, and the objective vectorsbe g4, ., ..., Qy, correspond to
theK right side vector possibilities. We can also requirethe origina
variables to satisfy linear constraints that are not affected by uncertainty.
These are

AgX =D
With these additions, the linear programming formulation becomes

Minimize cx  +pdqyq +PAYo+ ..o FPOkYi

subjectto  Agx =bg
AX  +Myy, =by
AX +Myy, =b,
AX + MKyK = bK

Xx30, y130, y,20,...,y,3* 0

In any specific case, the size of thislinear program is large because of the
large number of possible realizations of the random events that determine
the characteristics of the recourse problems. We have, however, a
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deterministic equivaent of the stochastic problem that can be solved by
linear programming.

Example 2

For the example introduced in the last section we write the linear
programming model written as if b was a known.

Minimize z= Ox -ly; +5y, +2y; +4y, +0yg

X +tyr =Y =Db

X +ys +y, -ys =10
O£x,0£y,£12, 0£y,£12, 0£y3£5 0£y,£5 0£y:£12

The objective isto minimize cost. They variables are the arc flows indexed
according to the arc numbersin Fig. 4. The x variableisthe flow for arc 6.
We differentiate it because thisis the present decision that must be made
before the random variableisredlized. The constraints are conservation of
flow requirements at the authority and town nodes. Conservation is not
required at the source and sink nodes.

The stochastic programming model isformed by defining recourse
variablesfor each redlization. Thus et

Yik = theflow inarcjinredization k

Now the deterministic linear programis

Minimize z= Ox +0.2(-1yqq +5Yyy1 +2y3; +4y,; +0yg)
+0.2(=1ygp +5Ypp + 2yz + 4ygp + Oysp)
+0.2(—1yq3 + 5yo3 + 2y33 + 4y,3 + Oysa)
+0.2( —1yq4 + 5Yo4 + 2y3, + 4y, +0ysy)
+0.2( =1y 5 + 5Yo5 + 2y35 + 4y 5 + Oyee)

subject to
real.1 X +yq; =Yy = 0
X +¥31 tYa Y51 = 10
rea.2 X +Y;, =Yy = 3
X tY3p tYs V5 = 10
rea.3 X +Yi3 —Yo3 = 6
X Y33 tYs3 —¥53 = 10
rea.4 X +Yi4 —You = 9
X +Yas tYu —Ysu = 10
rea.5 X +y;5 —Yos = 12
X Y35 +tYss —¥s5 = 10
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O£y £12, O£y, £12, 0£y5 £5 O£y, £5 O£y £12
0£y;,£12, 0£y,n£12, 0£y3£5 O0£Y,LE5 O0£ys,£12
0£y;3£12, 0£y,0£12, 0£yg£5 O0£YypE5 O£y, £12
O£y £12, 0£y, £12, 0£Yy3£5 O£y, E£5 OL£yg,£12
0£Y;s£12, O£y, £12, 0Ly £5 O£y, £5 O£y £12

Solving this model we obtain,
zr =146 and x* = 5.
The solution for the recourse variablesis shown in Table 3.

Table 3. Solution for the Recourse Variables

Realization, k by Yk Yok Y3k Yak Yk
1 0 0 5 5 0 0
2 3 0 2 5 0 0
3 6 1 0 5 0 0
4 9 4 0 5 0 0
5 12 7 0 5 0 0

The solution that minimizes the expected cost over al redlizationsisto
allocate 5 units to the town. The town experiences a shortage of 5 units with
acost of $10. In the event that the natural supply is greater than 5, the
excess is released down stream. When the natural supply islessthan 5, the
shortage is made up by purchasing water. We have found this solution with
adeterministic linear programming model, but it is arather large model for
such asmall problem, 26 variables and 10 constraints.

Although this problem is a network flow model for any fixed value
of X, the stochastic programming problem no longer has the network
structure. The model must be solved as a general linear program.

Multistage Models

The approach can be adapted to multistage problems, asillustrated in Fig. 5.
Here, aternative futures are broken down into a series of periodic

decisons. Anillustration isthe water planning problem suggested at the
beginning of the chapter. Thisis not atwo stage problem, but decisions
must be made in each of a number of future periods. The periods may
represent months and the decisions are the amountsto release in each
month. Uncertain events are revealed in a periodic manner. Thus the present
decisionx determinesreleasesin the first month. These releases must be
made when al future supplies and demands are uncertain. After the first
month passes, part of the uncertainty is removed; specificaly, the supplies
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and demands in the first month are known. Now the decisions of the second
month must be made. The sequential decisions and realizations of uncertain
events are represented explicitly in the model, so the optimal decisions at the
present time can be determined.

Fleorsinn = %

Figure 5. Multistage stochastic model

The difficulty with the stochastic programming model isits size and
the corresponding computational difficulty required to obtain a solution. A
model representing K scenarios of the type shown in Fig. 2 isK times
larger than the similar deterministic problem of Fig. 1. Modelsfor the

multiperiod problem of Fig. 5arep” K timesthe size of the deterministic
problem when there are p periods with K scenarios at each period. A
second difficulty isthe structure of the mathematical programming model.
When the what if problem has the structure of a network flow programming
model, the stochastic programming model will be ageneral linear program,
amuch harder model to solve.
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27.3 Markovian Decision Processes

Chapters 12 - 16 described a stochastic process called the Markov chain. The procedures
described in those chapters allow one to analyze the system by computing such measures as
the steady-state probabilities. This section adds the dimension of decision making to the
Markov chain. Now, at every step of the process, before the transition to the next stateis
determined, a decision must be made that affects the transition probabilities. This section
explains how the problem is stated and solved as alinear program. There are number of
interesting applications of the model and the associated solution procedures.

The Decision M odel

The Markov chain is defined by states numbered O through m— 1. For each
pair of statesi and j, thereis atransition probability p, i Thetransition

probabilities are arranged into the transition matrix P. Steady-state
probabilities are

T =(Tg Tqeees Typg)

They can be found by solving the set of linear equations

m-1
n(P-1)=0 and@ n,= 1.
i=0
We add a decision dimension to this problem by defining for each
statei adecision dj, where dj isan index ranging from 1 through K

representing possible actions one might take while in statei. A policy R
specifies adecision for each state.

Decisions affect the transition probabilities, so we must define the
transition probability as afunction if the decision. Thus p; j (k) isthe

probability of atrangition from state i to state | if one makes the decision k.
The values of p; j (K) are data that must be provided for every pair of states

for every decision.

We also define the cost incurred if decision k is made whilein state
as C,,.. The steady state probabilities and the cost of operating the Markov

chain depends on the policy R. We definent(R) as the steady-state
probabilitieswith policy R, and C(R) as the expected cost of operation with
policy R.

C(R) = & [Cym (R k= d (R

The goal isto find the policy that minimizes the expected cost.

Thedecision matrix, D, isan m” K matrix with component D;,

defined as the probability that the decision k will be taken, given that the
systemisin statei.

D, = P{decision=k | state=i}, i =0,....m-landk =1,...,K.
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The decision matrix completely defines a decision policy. Although the
model allows amixed policy?, the optimal solution is aways a pure policy.
The components of the optimal decision matrix are either O or 1.

Linear Programming M odel

Example 3

Given the data Pij (k)and C;, for dl valuesof i, j and k, this problem is

modeled and solved as alinear program. The genera formulation follows
with an example provided in the next section.

The decision variables of the linear program are

Yik = P{stateisi and the decisionisk}, i =0,...m-1landk =1,...,.K

The objective isto minimize the expected cost of operation.
T St &
Minimizez = @ a C,Yi
i=0 k=1
Thefirst set of constraints requires that the steady-state probabilities sum to
1.

Bt &
aay-=1
i=0 k=1
The second set of constraints are equations define the steady-state
probabilities.

1K
a Yh (k) =0, j=0,1,...,m-1
k

K
o)
k= =1

a yjk_

1 i=0

Qo7

Finally, we require nonnegativity for the probabilities.
Yi® 0,1 =01,....mladk=1,2,..,K

After the linear program is solved, the results in more usable form are
obtained by computing the decision probabilities. The steady state
probability mj isthe sum over all possible decisionsin state .
K
m=aVv i=01,.,m1l
k=1
The decision probabilities are

Dik =VYijk/m; fori=0,1,....m-landk=1, 2,...,K

Consider again the computer repair problem that was described in Section
12.1. An office hastwo computers that are used for word processing. It
has been observed that when both are working in the morning, thereisa

30% chance that one will be failed by evening and a 10% chance that both

1 Mixed policies are defined in the context of game theory in Chapter 24.
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will befailed. If it happensthat only one computer isworking in the
morning, thereis a20% chance that it will be failed by evening.

With one computer failed, some of the office work must be sent to a
typing service at a cost of $20 per day. With both machinesfailed, the cost
of the service increases to $100 per day.

The technician charges $40 to fix acomputer and it takes 1 day for
therepair. When heis called in the morning he picks up the broken
machines immediately and guarantees their return by the next morning. He
charges afixed fee of $50 for apick up. Thisfeeisindependent of how
many need repair.

The office manager must decide when to call the technician. Should
she call after the first machine fails or wait until both have failed? Which
policy yields the smallest average cost?

Solution

There arereally only two possible decisions at any state.
1. Do not call the technician
2. Cadll thetechnician
Thus we have K = 2 with the alternatives numbered as above.

The state of the system is the number of failed computers observed
after the technician has returned repaired machines. There are three states
for this problem:

0. No computers havefailed
1. Onecomputer hasfailed
2. Two computers have failed

The obvious decision for state O is not to call the technician. Thusdg = 1.

When the systemisin state 2, the optimal planisto call the technician (the
machines must eventually be repaired so there is no reason to delay), so do

= 2. State 1 involvesthe only question with both alternatives as reasonable
possibilities.
We use alinear programming model to solve this problem. Since

there are two decisions and three states, there are potentially six decision
variables.

Yo7 = P{no computers have failed and technician is not called}
Yoz = P{no computers have failed and technician is called}

Y11 = P{one computer has failed and technician is not called}
Y1, = P{one computer has failed and technicianis called}

Y51 = P{two computers have failed and technician is not called}
Yo, = P{two computers have failed and technician is called}

Wededetey, andy,q asimpractical alternatives.
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We define P; (k) asrow i of the transition matrix if decisonk is
selected. For the four remaining decisions, we have

Po(1)=[ 06 03 01]
P,()=[0 08 02]
Py(2)=[08 02 0 ]
Po(2)=[1 O 0 ]
The cost of operation given the state and decision can also be computed.
Co1 = 0, thereis no cost if no typewriters are failed
Cq1 = 20, thisisthe cost of the typing service with onefailed

Cy» = 110, thisis the cost of the typing service plus the cost of
repairing the machine

Cyy = 230, thisisthe cost of the typing service plus the cost of
repairing two machines

Using general notation, we have the following linear programming model.

Minimizez = Copyo1t Cr1y11t Cro¥1ot Cooyao

subjectto yoit+ Y11t yiotyao =1
Yo1 —[Poo(1D)Yo1 + P1o(D)Yy11+ P10(2)y12+ P20(2y22] =0
Y11 * Y12 = [Por(DYo1 * P11(D)y11+ P11(2y12+ P21(2)y2o] =0
Y22~ [Po2(DYo1 + P12(D)y11t P12(2)y12+ P22(2)y22] =0

Yo13 0,¥113 0,¥12% 0,y202% 0

Substituting the probabilities and costs, gives

Minimizez = Oyo1+ 20y11+ 110y4o+ 230y2o

subjectto  yop ty11 + Y1t Y2 =1
0.4y01 —0.8y12—y2=0
—0.3ypy +0.2y7; + 0.8y12=0

—0.1yp1 —0.2y313 +y22 =0



Markov Decision Processes

15

Yo1° 0, ¥11° 0, y123 0, y22® O.
with optimal solution

z- = 43.56,y j = 0.678, yi; =0, y1,=0.254, y5, = 0.068.
From this result, we compute the steady -state probabilities
ny=0.678, m; = 0.254, m,=0.068,
and the optimal decisions
Doy =1, Dy; =0, D;,=1, Dy, =1

The optimal policy isto call the technician if there are either one or two
failed machines. The expected cost per day is $43.56.
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27.4 Exercises

Section 27.2

1. A manufacturer has supplies of some commodity at three warehouses which he
routinely ships to three customers. The unit shipping costs, the supplies at the
warehouses, the revenue at each customer, and three possible demand levels are
shown in the table.

Shipping costs Supply
Warehouse 1 10 20 18 20
Warehouse 2 8 15 12 15
Warehouse 3 13 17 19 15
Revenue 20 25 27

Low demand 5 13 10
Medium demand 10 20 16
High demand 12 23 20

The manufacturer must ship products to the customers, but their demands are not
known with certainty. Based on past experience each customer has been given three
demand levels: low, medium and high, as shown in the table. For this example, al
customers will have the same level of demand but the level is determined with the
following probabilities.

P{low} =0.2, P{medium} = 0.5, P{high} =0.3

If the amount shipped to a customer is less than the amount demanded, sales are lost.
The cost of alost saleisthelost revenue. If the amount shipped to a customer is more
than the amount demanded, the excess product must be sold at adiscount. The
revenue for such asaleis $5. Not all supplies need be shipped. Determine how much
to ship to each customer to maximize expected profit.

2. Solve Exercise 1 using the following data.
P{low} = 0.5, P{medium} =0.3, P{high} =0.2.

3. Consider again Exercise 1, but allow any shortages to be made up with emergency
shipments from the warehouses using any supplies that remain after the original
shipments. The cost of an emergency shipment is $5 more than the original shipping
cost shown in the table. Shortages can also result in lost sales as originally proposed.
Solve this problem.

Section 27.3

4. Consider the examplein Section 27.3, but assume that the company buys another
computer for atotal of three machines. When al three machines are working in the
morning thereis a 32% probability that one will have failed by the evening, a 10%
probability that two will have failed, and a 3% probability that al three will have
failed. Asbefore, when two are working in the morning, thereis a 30% chance that
one will have failed by the evening and a 10% chance that both will havefailed. If it
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happens that only one computer is working in the morning, there is a 20% chance that
it will have failed by evening.

With one computer out of commission, some of the office work must be sent to a
typing service at a cost of $10 per day. With two machines out of commission the
cost will be $25, and with al three machines failed the cost of the service increases to
$100 per day.

The technician charges $40 to fix a computer and it takes 1 day for the repair. When
heiscaled in the morning he picks up the failed machinesimmediately and will
guarantee their return by the next morning. He charges a fixed fee of $50 to pick up
the machines. Thisfeeisindependent of how many need repair. With aminimum
cost policy, how many machines must be out of commission before the office
manager cdlsthe technician?

Thisisan abstract problem in which there are three states. 1n each state, one of three
decisions must be made. The matrices P(k) show the transition probabilities,
assuming the same decision k ismadein every state. Thisisnot alimitation,
however, since the policy may use adifferent decision for each state. Also shownis
the decision cost matrix C. Set up and solve alinear program to determine the optimal
decision in each state. Also find the steady-state probabilities. The goa isto
minimize steady state average cost.

é0.0 03 0.7

e
P(D) =& 09 01 00
€02 00 08

O O

éo.l 0.6 03
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p(z):é0.7 02 01

€01 03 06

O O
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e
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€02 04 04
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A dealer selling high-priced cars faces the following weekly demand distribution.

Demand 0 1 2
Probability 0.1 0.5 0.4

The dealer looks at the inventory at the end of each week and must determine if an
order should be placed and, if so, how many carsto order. The cars arrive 1 week
after the order isplaced. There may be atotal of no more than five cars either in
inventory or on order. The cost of placing an order is $600, independent of how
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many cars are ordered. If thereisademand for acar and there is no inventory, the
saleislost with alost profit of $2000. The cost associated with an unsold car in
inventory at the end of aweek is$200. Set up this problem asaMarkov decision
process and find the optimal policy.

A gqueueing system has three service channels. Using a 5-minute study period, the
following probabilities have been determined for the number of arrivals during the
period.

Arrivals 0 1 2 3
Probability 0.1 0.3 04 0.2

For simplicity assume that the arrivals occur at the beginning of the period. These
arrivals will enter the system until the number in the system is 10. When this occurs
the arrivals will balk. The cost of a balking customer is $100.

The number of customers who leave the system during a period depends on the
number of channels open and the number in the system at the beginning of the period.
The probability distribution for the number of service completions given that there are
sufficient customersin the system is given below for the various numbers of
channels.

Completions 0 1 2 3 4
One channel open 0.3 0.5 0.2 0 0
Two channels open 0.1 0.2 04 0.3 0
Three channels open 0 0.1 0.2 0.5 0.2

If there aren't enough customersin the system to utilize the full capacity of a particular
channel configuration, the probabilities for the excess capacities are combined with the
probability for the specific number of customersin the system. For instance, if there
are only two customersin the system at some period, the service probability
distributions appears as below.

Completions 0 1 2 3 4
One channel open 0.3 0.5 0.2 0 0
Two channels open 0.1 0.2 0.7 0 0
Three channels open 0 0.1 09 0 0

Let the charge for an open channel be $7 per period. Let the waiting cost for a
customer be $2 for each whole period spent in the system. Y ou must determine a
policy for how many channels to open as a function of the number of customersin the
system. Describe this problem as a Markov decision problem and solveit with a
linear programming code.
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