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Time Series and Forecasting

A time series is a sequence of observations of a random variable.  Hence, it is a stochastic
process.  Examples include the monthly demand for a product, the annual freshman
enrollment in a department of a university, and the daily volume of flows in a river.
Forecasting time series data is important component of operations research because these
data often provide the foundation for decision models.  An inventory model requires
estimates of future demands, a course scheduling and staffing model for a university
requires estimates of future student inflow, and a model for providing warnings to the
population in a river basin requires estimates of river flows for the immediate future.

Time series analysis provides tools for selecting a model that can be used to forecast
of future events.  Modeling the time series is a statistical problem.  Forecasts are used in
computational procedures to estimate the parameters of a model being used to allocated
limited resources or to describe random processes such as those mentioned above.  Time
series models assume that observations vary according to some probability distribution
about an underlying function of time.

Time series analysis is not the only way of obtaining forecasts.  Expert judgment is
often used to predict long-term changes in the structure of a system.  For example,
qualitative methods such as the Delphi technique may be used to forecast major
technological innovations and their effects.  Causal regression models try to predict
dependent variables as a function of other correlated observable independent variables.

In this chapter, we only begin to scratch the surface of the field, restricting our
attention to using historical time series data to develop time-dependent models.  The
methods are appropriate for automatic, short-term forecasting of frequently used
information where the underlying causes of time variation are not changing markedly.  In
practice, forecasts derived by these methods are likely to be modified by the analyst upon
considering information not available from the historical data.

Several methods are described in this chapter, along with their strengths and
weaknesses.  Although most are simple in concept, the computations required to estimate
parameters and perform the analysis are tedious enough that computer implementation is
essential.  For a more detailed treatment of the field, the reader is referred to the
bibliography.

22.1 Time Series Models
An example of a time series for 25 periods is plotted in Fig. 1 from the numerical data in
the Table 1.  The data might represent the weekly demand for some product.  We use x to
indicate an observation and the subscript t to represent the index of the time period.  For the
case of weekly demand the time period is measured in weeks.  The observed demand for
time t is specifically designated xt.   The lines connecting the observations on the figure are
provided only to clarify the graph and otherwise have no meaning.
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Table 1.  Random Observations of Weekly Demand

Time Observations

  1 - 10 4 16 12 25 13 12 4 8 9 14
11 - 20 3 14 14 20 7 9 6 11 3 11
20 - 25 8 7 2 8 8 10 7 16 9 4
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Figure 1.  A time series of weekly demand

Mathematical Model

Our goal is to determine a model that explains the observed data and allows
extrapolation into the future to provide a forecast.  The simplest model
suggests that the time series in Fig. 1 is a constant value b with variations
about b determined by a random variable t.

X t = b + t (1)

The upper case symbol X t represents the random variable that is the
unknown demand at time t, while the lower case symbol xt is a value that

has actually been observed.  The random variation t about the mean value
is called the noise, and is assumed to have a mean value of zero and a given
variance.  It is also common to assume that the noise variations in two
different time periods are independent.  Specifically

E[ t] = 0, Var[ t] = 2, E[ t w] = 0 for t ≠ w .

A more complex model includes a linear trend b1 for the data.
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Xt = b0 + b1t  + t. (2)

Of course, Eqs. (1) and (2) are special cases of a polynomial model.

X t = b0 + b1t  + b2t 2+ … + bnt n + t

A model for a seasonal variation might include transcendental functions.
The cycle of the model below is 4.  The model might be used to represent
data for the four seasons of the year.

X t = b0 + b1 sin
2 t
4   + b1 cos

2 t
4   + t

In every model considered here, the time series is a function only of
time and the parameters of the models.  We can write

X t = f(b0, b1, b2,…,bn, t) + t.

Because the value of f is a constant at any given time t and the expected
value of t is zero,

E[Xt] = f(b0, b1, b2,…,bn, t) and Var[X t] =V[ t] = 2.

The model supposes that there are two components of variability for the
time series; the mean value varies with time and the difference from the
mean varies randomly.  Time is the only factor affecting the mean value,
while all other factors are subsumed in the noise component.  Of course,
these assumptions may not in fact be true, but this chapter is devoted to
cases that can be abstracted to this simple form with reasonable accuracy.

One of the problems of time series analysis is to find the best form
of the model for a particular situation.  In this introductory discussion, we
are primarily concerned about the simple constant or trend models.  We
leave the problem of choosing the best model to a more advanced text.

In the following subsections, we describe methods for fitting the
model, forecasting from the model, measuring the accuracy of the forecast
and forecasting ranges.  We illustrate the discussion of this section with the
moving average forecasting method.  Several other methods are described
later in the chapter.

Fitting Parameters of the Model

Once a model is selected and data are collected, it is the job of the statistician
to estimate its parameters; i.e., to find parameter values that best fit the
historical data.  We can only hope that the resulting model will provide good
predictions of future observations.

Statisticians usually assume that all values in a given sample are
equally valid.  For time series, however, most methods recognize that recent
data are more accurate than aged data.  Influences governing the data are
likely to change with time so a method should have the ability of de-
emphasizing old data while favoring new.  A model estimate should be
designed to reflect changing conditions.
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 In the following, the time series model includes one or more
parameters.  We identify the estimated values of these parameters with hats
on the parameters.  For instance,

b̂1, b̂2,…,  b̂n.

The procedures also provide estimates of the standard deviation of the
noise, call it .  Again the estimate is indicated with a hat, ˆ .  We will see

that there are several approaches available for estimating e.

To illustrate these concepts consider the data in Table 1.  Say that the
statistician has just observed the demand in period 20.  She also has
available the demands for periods 1 through 19.  She does not know the
future, so the data points shown as 21 through 25 are not available to her.
The statistician thinks that the factors that influence demand are changing
very slowly, if at all, and proposes the simple constant model for the
demand given by Eq. (1)

With the assumed model, the values of demand are random variables
drawn from a population with mean value b.  The best estimator of b is the
average of the observed data.  Using all 20 points, the estimate is

b̂ = x t
t =1

20

∑ / 20  = 11.3.

This is the best estimate for the 20 data points; however, we note
that x1 is given the same weight as x20 in the computation.  If we think that
the model is actually changing over time, perhaps it is better to use a method
that gives less weight to old data and more weight to the new.  One
possibility is to include only recent data in the estimate.  Using the last 10
observations and the last 5, we obtain

b̂ = x t
t =10

20

∑ /10  = 11.2 and b̂ = x t
t =15

20

∑ / 5 = 9.4.

which are called moving averages.

Which is the better estimate for the application?  We really can't tell
at this point.  The estimator that uses all data points will certainly be the best
if the time series follows the assumed model; however, if the model is only
approximate and the situation is actually changing, perhaps the estimator
with only 5 data points is better.

In general, the moving average estimator is the average of the last m
observations.

b̂ = ∑
i=k

t
xi /m,

where k = t  – m + 1.  The quantity m is the time range and is the parameter
of the method.
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Forecasting from the Model

The main purpose of modeling a time series is to make forecasts which are
then are used directly for making decisions, such as ordering
replenishments for an inventory system or developing staff schedules for
running a production facility.  They might also be used as part of a
mathematical model for a more complex decision analysis.

In the analysis, let the current time be T, and assume that the
demand data for periods 1 through T are known.  Say we are attempting to
forecast the demand at time T  +   in the example presented above.  The
unknown demand is the random variable X T+ , and its ultimate realization

is xT+ .  Our forecast of the realization is x̂T+ .  Of course, the best that we
can hope to do is estimate the mean value of X T+ .  Even if the time series
actually follows the assumed model, the future value of the noise is
unknowable.

Assuming the model is correct

X T+ = E[X T+ ] + t where E[X T+ ] = f(b0, b1, b2,…,bn, T+ ).

When we estimate the parameters from the data for times 1 through T, we
have an estimate of the expected value for the random variable as a function
of .   This is our forecast.

x̂T+  = f(b̂0, b̂1, b̂2, …,b̂n, T+ ).

Using a specific value of   in this formula provides the forecast for period

T+ .  When we look at the last T observations as only one of the possible
time series that could have been obtained from the model, the forecast is a
random variable.  We should be able to describe the probability distribution
of the random variable, including its mean and variance.

For the moving average example, the statistician adopts the model

X t = b + t.

Assuming T is 20 and using the moving average with 10 periods, the
estimated parameter is

 b̂ = 11.2.

Because this model has a constant expected value over time, the forecast is
the same for all future periods.

x̂T+  = b̂ = 11.2 for  = 1, 2, …

Assuming the model is correct, the forecast is the average of m
observations all with the same mean and standard deviation .  Because the
noise is normally distributed, the forecast is also normally distributed with
mean b and standard deviation
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m

Measuring the Accuracy of the Forecast

The error in a forecast is the difference between the realization and the
forecast,

e  = xT+  – x̂T+ .

Assuming the model is correct,

e  = E[X T+ ] + t – x̂ T+ .

We investigate the probability distribution of the error by computing its
mean and variance.  One desirable characteristic of the forecast x̂T+  is that
it be unbiased.  For an unbiased estimate, the expected value of the forecast
is the same as the expected value of the time series.  Because t is assumed
to have a mean of zero, an unbiased forecast implies

E[e ] = 0.

Moreover, the fact that the noise is independent from one period to the next
means that the variance of the error is

Var[e ] = Var[E[X T+ ] – x̂ T+ ] + Var[ T+ ]

2( ) = E
2( ) + 2.

As we see, this term has two parts: (1) that due to the variance in the
estimate of the mean E

2( ), and (2) that due to the variance of the noise 2.
Due to the inherent inaccuracy of the statistical methods used to estimate the
model parameters and the possibility that the model is not exactly correct,
the variance in the estimate of the means is an increasing function of .

For the moving average example,

2( ) = 
2

m   + 2 = 2[1 + (1/m)].

The variance of the error is a decreasing function of m.  Obviously, the
smallest error comes when m is as large as possible, if the model is correct.
Unfortunately, we cannot be sure that the model is correct, and we set m to
smaller values to reduce the error due to a poorly specified model.

Using the same forecasting method over a number of periods allows
the analyst to compute measures of quality for the forecast for given values
of .  The forecast error, et, is the difference between the forecast and the
observed value.  For time t,

et = xt  – x̂t.
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Table 2 shows a series of forecasts for periods 11 through 20 using
the data from Table 1.  The forecasts are obtained with a moving average for
m = 10 and  = 1.  We make a forecast at time t with the calculation

x̂t+1 = x i /10
i =t –9

t

∑ .

Although in practice one might round the result to an integer, we keep
fractions here to observe better statistical properties.  The error of the
forecast is the difference between the forecast and the observation.

Table 2.  Forecast Error for a Moving Average

Time,       t   
Data 11 12 13 14 15 16 17 18 19 20

Observation 3 14 14 20 7 9 6 11 3 11
Forecast 11.7 11.6 11.4 11.6 11.1 10.5 10.2 10.4 10.7 10.1

Error –8.7 2.4 2.6 8.4 –4.1 –1.5 –4.2 0.6 –7.7 0.9

One common measure of forecasting error is the mean absolute
deviation, MAD.

MAD = 

| ei |
i =1

n

∑
n

where n error observations are used to compute the mean.

The sample standard deviation of error is also a useful measure,

se = 

∑
i=1

n

(ei  –  –e)2

n –  p   = 

∑
i=1

n

ei
2 –  n(–e)2

n –  p

where –e is the average error and p is the number of parameters estimated for
the model.  As n grows, the MAD provides a reasonable estimate of the
sample standard deviation

se  ≈ 1.25 MAD

From the example data we compute the MAD for the 10
observations.

MAD = (8.7 + 2.4 + . . . + 0.9)/10 = 4.11.

The sample error standard deviation is computed as follows.

–e = (–8.7 + 2.4 … 0.9)/10 = –1.13.

se2 =  
(–8.72 +  2 .42,…,0.92) – 10(–1.13)2

9   = 27.02
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se = 5.198.

We see that 1.25(MAD) = 5.138 is approximately equal to the sample
standard deviation.  Because it is easier to compute the MAD, this measure
is used in our examples.1

The value of se
2 for a given value of  is an estimate of the error

variance, 2( ).  It includes the combined effects of errors in the model and
the noise.  If one assumes that the random noise comes from a normal
distribution, an interval estimate of the forecast can be computed using the
Students t distribution.

x̂T+ ± t /2se( )

The parameter t /2 is found in a  Students t   distribution table with n – p
degrees of freedom.

                                                
1The time series used as an example is simulated with a constant mean.  Deviations from
the mean are normally distributed with mean 0 and standard deviation 5.  One would expect
an error standard deviation of 5 1+1/10  = 5.244.  The observed statistics are not far from
this value.  Of course, a different realization of the simulation will yield different statistical
values.
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22.2 Analysis of the Constant Model
In this section, we investigate two procedures for estimating and forecasting based on a
constant model.  The next section considers a model involving a linear trend.   For all cases
we assume the data from previous periods: x1, x2, … , xT, is available and will be used to
provide the forecast.

To illustrate the methods, we propose a data set that incorporates changes in the
underlying mean of the time series.  Figure 2 shows the time series used for illustration
together with the mean demand from which the series was generated.  The mean begins as
a constant at 10.  Starting at time 21, it increases by one unit in each period until it reaches
the value of 20 at time 30.  Then it becomes constant again.  The data is simulated by
adding to the mean, a random noise from a normal distribution with 0 mean and standard
deviation 3.  Table 3 shows the simulated observations.  When we use the data in the table,
we must remember that at any given time, only the past data are known.

4

7

10

13

16

19

22

0 5 10 15 20 25 30 35 40 45 50

Figure 2.  Simulated data for model with a linear trend

Table 3.  Simulated Observations

Time Observations

  1 - 10 7 14 11 19 12 11 7 9 9 12
11 - 20 6 12 12 16 8 9 7 11 6 10
21 - 30 10 10 8 13 14 16 15 22 19 16
31 - 40 19 22 21 18 20 22 21 20 20 21
41 - 50 23 22 22 18 17 18 19 21 20 21

Moving Average

This method assumes that the time series follows a constant model, i.e., Eq.
(1) given by X t = b + t.  We estimate the single parameter of the model as
average of the last m  observations.
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b̂ = x i / m
i = k

t

∑ ,

where k = t  – m + 1.  The forecast is the same as the estimate.

x̂T+  = b̂  for  > 0

The moving average forecasts should not begin until m periods of data are
available.  To illustrate the calculations, we find the estimate of the
parameter at t = 20 using m = 10.

b̂ = ∑
i=11

20
xi /10 = 9.7

The estimates of the model parameter, b̂, for three different values of
m are shown together with the mean of the time series in Fig. 3.  The figure
shows the moving average estimate of the mean at each time and not the
forecast.  The forecasts would shift the moving average curves to the right
by   periods.
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Figure 3.  Moving average response to changes

One conclusion is immediately apparent from Fig. 3.  For all three
estimates the moving average lags behind the linear trend, with the lag
increasing with m.  Because of the lag, the moving average underestimates
the observations as the mean is increasing.  The lag in time and the bias
introduced in the estimate are

lag = (m – 1)/2,  bias = –a(m – 1)/2.
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The moving average forecast of   periods into the future increases these
effects.

lag =   + (m – 1)/2,  bias = –a[   + (m – 1)/2].

We should not be surprised at this result.  The moving average
estimator is based on the assumption of a constant mean, and the example
has a linear trend in the mean.  Because real time series will rarely obey the
assumptions of any model exactly, we should be prepared for such results.

We can also conclude from Fig. 3 that the variability of the noise has
the largest effect for smaller m.  The estimate is much more volatile for the
moving average of 5 than the moving average of 20.  We have the
conflicting directives to increase m to reduce the effect of variability due to
the noise, and to decrease m to reduce the effect of the variability due to
changes in mean.

Exponential Smoothing for the Constant Model

Again, this method assumes that the time series follows a constant model,
X t = b + t.  The parameter value b is estimated as the weighted average of
the last observation and the last estimate.

b̂T = xT  + (1 – )b̂T–1,

where   is a parameter in the interval [0, 1].  Rearranging, obtains an
alternative form.

b̂T = b̂T–1 + (xT  – b̂T–1).

The new estimate is the old estimate plus a proportion of the observed error.

Because we are supposing a constant model, the forecast is the same
as the estimate.

x̂T+  = b̂  for  > 0.

We illustrate the method using the parameter value = 0.2.  The
average of the first 10 periods was used as initialize the estimate at time 0.
The first 10 observations were then used to warm up the procedure.
Subsequent observations and estimates are shown in Table 4.

Table 4.  Results of the Exponential Moving Forecast

Time 11 12 13 14 15 16 17 18 19 20

Observation 6 12 12 16 8 9 7 11 6 10
Estimate 10.7 9.763 10.21 10.57 11.65 10.92 10.54 9.831 10.06 9.252

At time 21 we observe the value 10, so the estimate of the mean at
time 21 is
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b̂21 = b̂20 + 0.2(x21  – b̂20) = 9.252 + 0.2(10 – 9.252) = 9.412.

Only two data elements are required to compute the new estimate, the
observed data and the old estimate.  This contrasts with the moving average
which requires m old observations to be retained for the computation.

Replacing b̂T- 1 with its equivalent, we find that the estimate is

b̂T = xT  + (1 – )( xT–1  + (1 – )b̂T– 2).

Continuing in this fashion, we find that the estimate is really a weighted
sum of all past data.

b̂T = (xT  + (1 – )xT–1 + (1 – )2xT– 2 + … + (1 – )T–1x1).

Because  is a fraction, recent data has a greater weight than more

distant data.  The larger values of  provide relatively greater weight to

more recent data than smaller values of    Figure 4 shows the parameter

estimates obtained for different values of  together with the mean of the
time series.
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Figure 4.  Exponential smoothing for the example time Series

A lag characteristic, similar to the one associated with the moving
average estimate, can also be seen in Fig. 4.  In fact, one can show
comparable results

lag = 
1  –  

,  bias = – 
a(1  –  )
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For larger value of  we obtain a greater lag in response to the trend.

To investigate the error associated with exponential smoothing we
again note that the error is

e  = xT+ – x̂T+ .

Assuming the model is correct, we have the following.

e  = E[X T+ ] +  – x̂T+ .

E[e ] = E[X T+ ] + E[ ] – E[x̂T+ ]

E[x̂T+ ] = b[1 + (1 – ) + (1 – )2 + … + (1 – )T–1].

As the T goes to infinity, the series in the brackets goes to 1/ , and we find
that

E[x̂T+ ] = b and E[e ] = 0.

Because the estimate at any time is independent of the noise at a future time,
the variance of the error is

Var[e ] = Var[x̂T+ ] + Var[ T+t]

2( ) = E
2( ) + 2.

The variance of the error has two parts, the first due to the variance in the
estimate of the mean E

2( ), and the second due to the variance of the noise
2.  For exponential smoothing,

E
2( ) = 

2

2  –  
.

Thus assuming the model is correct, the error of the estimate increases as 
increases.

This result shows an interesting correspondence to the moving
average estimator.  Setting the estimating error for the moving average and
the exponential smoothing equal, we obtain.

E
2( ) = 

2

m  =  
2

2  –  
.

Solving for  in terms of m, we obtain the relative values of the parameters
that give the same error

 = 
2

m +  1 .
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Thus the parameters used in the moving average illustrations of Fig. 3 (m =
5, 10, 20) and roughly comparable to the parameters used for exponential
smoothing in Fig. 4 (  = 0.4, 0.2, 0.1).  Using this same relation between
the parameters of the two methods, we find that the biased introduced by the
trend will also be the same.
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22.3 Analysis of the Linear Trend Model
One way to overcome the problem of responding to trends in the time series is to use a
model that explicitly includes a trend component,

X t = a + bt + t

which is Eq. (2).  In the following, we use a linear model of the form

X T = aT + bT(t  – T) + t.

Now, we must estimate two parameters âT  and b̂T from the observations previous to time
T.  Forecasts will be made by projecting the estimated model into the future.

x̂T+  = âT +  b̂T  for   > 0

Regression Analysis

One obvious way to estimate the parameters is to fit the last m observations
with a straight line.  This is similar to the moving average idea, except that
in addition to a constant term we also estimate the slope.

The formulas for determining the parameter estimates to minimize
the least squares differences between the line and the observations are well
known.  The results are repeated here.  The last m observations are used for
the estimate:  xT-m+1, xT-m+2,…,xT.

Define the following sums

S1(t) = xk
k =t − m+1

t

∑

S2(t) = (k – t)xk
k =t − m+1

t

∑ .

The estimates of the parameters are determined by operations on these
sums.

âT = 
6

m(m +  1)S2(T) + 
2(2m –  1)
m(m +  1) S1(T)

b̂T = 
12

m(m2 –  1)
S2(T) + 

6
m(m +  1)S1(T)

The expressions for the sums are awkward for spreadsheet
computation.  Nevertheless, the computations can be carried out easily in a
sequential fashion by noting

S1(t) = S1(t – 1) – xt–m + xt,

S2(t) = S2(t – 1) – S1(t – 1) + mxt-m.

As with the moving average estimate, the regression method requires that
the last m observations to be saved for computation.
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To illustrate the computations, we derive estimates for T = 20.  The
relevant quantities are shown in Table 5.

Table 5.  Illustration of Linear Model

Time, t

Data 11 12 13 14 15 16 17 18 19 20 Total

xt 6 12 12 16 8 9 7 11 6 10 97

(t  – T)xt –54 –96 –84 –96 –40 –36 –21 –22 –6 0 –455

âT = (0.05455)(–455) + (0.34545)(97) = 8.69

b̂T = (0.01212)(–455) + (0.05455)(97) = –0.22

Forecasts from time 20 are then computed from

x̂20+  = 8.69 – 0.22    for   > 0.

Figure 5 shows the regression estimates of â for three different
values of m.  Although there is a lag in response when the ramp begins, the
estimate gradually grows to meet the ramp when m = 5 and m = 10.  When
m = 20, there is insufficient time for the computations to match the slope
before the mean value becomes constant again.  We observe considerably
more variability for the same values of m when compared to the moving
average estimates in Fig. 3.  By allowing the flexibility of responding to a
trend, we have increased the variability of the estimates when the time series
is constant.
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Figure 5.  The linear regression estimate for the time series

The ability of the regression estimate to respond to a trend is more
clearly illustrated when we remove the noise from the time series (the noise
variance is set to 0).  The result is shown in Fig. 6 where the estimate
adjusts to the changing mean.  Because of a lag effect, there are periods of
over- and under-correction after the points in time when the slope changes.
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Figure 6.  Linear regression with zero noise variance

Exponential Smoothing Adjusted for Trend

There is also a variation of the exponential smoothing method that explicitly
accounts for a trend component.  Again we assume the linear model

X T = aT + bT(t  – T) + t.

The new method simultaneously estimates the constant and trend component
using two parameters  and .

âT = xT  + (1 – )(âT–1 + b̂T–1)

b̂T = (âT – âT–1) + (1 – )b̂T–1

Forecasts are made with the expression

x̂T+  = âT + b̂T .

At any time T, only three pieces of information are necessary to
compute the estimates âT–1, b̂T–1, and xT.  The exponential smoothing
method is much simpler to implement than the regression method.

There is justification for expressing both smoothing factors in terms
of a single parameter.  Here
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 = 1 – (1 – )2,  = 
2

1 –  (1  –  )2.

We use these formulas in the following computations.  The values of and
the associated smoothing parameters are shown in Table 6.

Table 6.  Data for Exponential Smoothing Example

Parameter Case 1 Case 2 Case 3

0.4 0.2 0.1
0.64 0.36 0.19
0.25 0.1111 0.0526

For purposes of illustration, we used a regression model with m =
10 to find initial estimates of the constant and trend components.  Starting at
time 10 we then applied the exponential smoothing equations.  The first 10
estimates are meaningless and constitute a warm up period for the method.
Assuming  = 0.2, at time 20 we have

x20 = 10,  â19 = 8.23936,  b̂19 = –0.253

â20 = 0.36x20 + (1 – 0.36)(â19 + b̂19) = 8.71

b̂20 = 0.1111(â20 – â19) + (1 – 0.1111)b̂19 = –0.172

Forecasting:  x̂20+  = 8.71 + 0.172 .

Estimates of the time series using three values of the parameter are
shown in Fig. 7.  Again we see that for greater values of , the estimate
begins to track the mean value after an initial overshoot when the trend
begins.  The lower values of  have less variability during the constant
portions of the time series, but react to the trend more slowly.
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Figure 7.  Example with estimates using exponential smoothing with a trend

Compared to the regression model, the exponential smoothing
method never entirely forgets any part of its past.  Thus it may take longer
to recover in the event of a perturbation.  This is illustrated in Fig. 8 where
the variance of the noise is set to 0.
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Figure 8.  Exponential smoothing with 0 noise variance
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22.4 Selecting a Forecasting Method
The selection of a forecasting method is a difficult task that must be base in part on
knowledge concerning the quantity being forecast.  We can, however, point out some
simple characteristics of the methods that have been described.  With forecasting
procedures, we are generally trying to recognize a change in the underlying process of a
time series while remaining insensitive to variations caused by purely random effects.  The
goal of planning is to respond to fundamental changes, not to spurious effects.

With a method based purely on historical data, it is impossible to filter out all the
noise.  The problem is to set parameters that find an acceptable tradeoff between the
fundamental process and the noise.  If the process is changing very slowly, both the
moving average and the regression approach should be used with a long stream of data.
For the exponential smoothing method, the value of  should be small to de-emphasize the
most recent observations.  Stochastic variations will be almost entirely filtered out.

If the process is changing rapidly with a linear trend, the moving average and the
exponential smoothing methods are at a disadvantage because they are not designed to
recognize trends.  Because of the rapid changes, the time range of the moving average
method must be set small and the  parameter of the exponential smoothing method must
be set to a larger value so that the forecasts will respond to the change.  Nevertheless, these
two methods will always fall behind a linear trend.  The forecasts will never converge to a
trend line even if there is no random variation.  Of course, with the adjustment of
parameters to allow a response to a process change, the forecasts become more sensitive to
random effects.

The exponential smoothing method with a trend adjustment and the regression
method are both designed to respond to a linear trend and will eventually converge to a
trend line.  Thus in the absence of a change in trend, the time range of the regression data
can be large, and the  and   values of the exponential smoothing method can be small,
thus reducing the random effects.

If the process is changing rapidly with rapid changes in the linear trend, each of the
methods described in the chapter will have trouble, because it is difficult to separate
changes in the process from random changes.  The time ranges must be set small for the
moving average and regression methods, resulting in sensitivity to random effects.
Similarly, the   and   parameters for exponential smoothing must be set to larger values
with a corresponding increase in sensitivity to randomness.

Both the moving average and regression methods have the disadvantage that they
are most accurate with respect to forecasts in the middle of the time range.  Unfortunately,
all interesting forecasts are in the future, outside the range of the data.  With all methods,
though, the accuracy of the results decreases with the distance into the future one wishes to
forecast.
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22.5 Exercises

1. Use the data in Table 3 and the analytical results presented in Section 22.2.  Assume
that you have observed the time series for 21 periods and let the next data point in the
series be x22 = 10.  Update each of the forecasts described in Section 22.2 for t = 23.

2. Use the data in Table 3 for times 35 through 44.

Time, t 35 36 37 38 39 40 41 42 43 44

Observation 53 55 44 41 48 42 33 38 26 23

Provide forecasts for times 45 through 50 using exponential smoothing with and
without a trend adjustment.  For purposes of exponential smoothing use

 = 0.3 and ˆ b 43 = 36.722.

For exponential smoothing with the trend adjustment, use

 = 0.3,  = 0.2, ˆ a 43  = 32.22, ˆ b 43 = –2.632.

3. The table below shows 60 observations from a time series.

Time Observations

  1 - 10 99 104 112 85 95 98 91 87 112 103
11 - 20 106 96 109 69 78 98 74 79 65 93
21 - 30 58 76 70 61 75 58 63 32 43 41
31 - 40 25 44 25 54 44 49 39 35 49 56
41 - 50 49 45 38 45 44 50 62 51 55 58
51 - 60 58 49 61 65 50 71 77 87 70 68

Using the data provided for times 1 through 10, generate a forecast for time 11.   Then
sequentially observe x11 through x20 (as given in the table), and after each observation

xt, forecast the mean of the next observation E[x̂t+1].  Compare the forecasts with the
actual data and compute the mean absolute deviation of the 10 observations.  Do this
for the following cases.

a. Moving average with n = 5

b. Moving average with n = 10

c. Regression with n  = 5

d. Regression with n = 10

e. Exponential smoothing with  = 0.2 and ˆ b 9 = 100.

f. Exponential smoothing with  = 0.1 and ˆ b 9 = 100

g. Exponential smoothing with  = 0.2, = 0.2, ˆ a 9= 100, ˆ b 9 = 0
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h. Exponential smoothing with  = 0.1, = 0.1, ˆ a 9= 100, ˆ b 9 = 0

Note: The data given for the exponential smoothing cases are not computed from the
data but are the model values for this point.

Computer Problems

For the following exercises, implement the appropriate forecasting methods using a
spreadsheet program such as Excel.  Try to use the most efficient approach possible when
designing the calculations.

4. The table below shows the random variations added to the model of Section 22.2 to
obtain the data of Table 3.  Double the values of these deviations and add them to the
model to obtain a new set of data.  Repeat the computations performed in Sections
22.2 and 22.3, and compare the mean residuals for the four forecasting methods
(moving average and exponential smoothing with and without a trend).

om Variations

Time Variations

  1 - 10 –3 4 1 9 2 1 -3 –1 –1 2
11 - 20 –4 2 2 6 –2 –1 –3 1 –4 0
21 - 30 –1 –2 –5 –1 –1 0 -2 4 0 –4
31 - 40 –1 2 1 –2 0 2 1 0 0 1
41 - 50 3 2 2 –2 –3 –2 –1 1 0 1

5. Use the data from Exercise 3 and experiment with the parameters of all methods
discussed in the chapter.  Try to find the best parameters for this data set.  Compare
the mean absolute deviations for the best parameters found.

6. The data below is simulated from a model that has a constant value of 20 for times 1
through 15.  At times 16 through 30, the model jumps to 40.   For times 31 through
50, the model goes back to 20.  Experiment with the parameters of the forecasting
methods described in the chapter to find the one that best forecasts this time series.

Time Observations

  1 - 10 21 24 16 21 24 25 24 25 21 20
11 - 20 20 21 24 20 17 35 46 48 44 43
21 - 30 37 49 39  42 46 40 40 32 46 49
31 - 40 18 31 24 28 23 27 18 17 26 22
41 - 50 15 22 12 11 25 22 17 14 21 20
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