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Time Series and Forecasting

A time seriesis a sequence of observations of arandom variable. Hence, it isastochastic
process. Examplesinclude the monthly demand for a product, the annual freshman
enrollment in a department of a university, and the daily volume of flowsin ariver.
Forecasting time series data is important component of operations research because these
data often provide the foundation for decison models. An inventory model requires
estimates of future demands, a course scheduling and staffing model for a university
requires estimates of future student inflow, and amodel for providing warningsto the
population in ariver basin requires estimates of river flows for the immediate future.

Time series analysis provides tools for selecting a model that can be used to forecast
of future events. Modeling the time seriesisastatistical problem. Forecastsare used in
computational procedures to estimate the parameters of amodel being used to allocated
limited resources or to describe random processes such as those mentioned above. Time
series models assume that observations vary according to some probability distribution
about an underlying function of time.

Time series analysisis not the only way of obtaining forecasts. Expert judgment is
often used to predict long-term changes in the structure of asystem. For example,
gualitative methods such as the Del phi technique may be used to forecast major
technological innovations and their effects. Causal regression modelstry to predict
dependent variables as afunction of other correlated observable independent variables.

In this chapter, we only begin to scratch the surface of the field, restricting our
attention to using historical time series data to develop time-dependent models. The
methods are appropriate for automatic, short-term forecasting of frequently used
information where the underlying causes of time variation are not changing markedly. In
practice, forecasts derived by these methods are likely to be modified by the analyst upon
considering information not available from the historical data

Several methods are described in this chapter, along with their strengths and
weaknesses. Although most are ssmple in concept, the computations required to estimate
parameters and perform the analysis are tedious enough that computer implementation is
essential. For amore detailed treatment of the field, the reader isreferred to the
bibliography.

22.1 Time Series Models

An example of atime seriesfor 25 periodsis plotted in Fig. 1 from the numerical datain
the Table 1. The data might represent the weekly demand for some product. Weusex to
indicate an observation and the subscript t to represent the index of the time period. For the
case of weekly demand the time period is measured in weeks. The observed demand for
timet is specifically designated x;. The lines connecting the observations on the figure are

provided only to clarify the graph and otherwise have no meaning.
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2 Time Series and Forecasting

Table 1. Random Observations of Weekly Demand

Time Observations

1-10 4 16 12 25 13 12 4 8 9 14
11-20 14 14 20 7 9 6 11 3 11
20-25 8 7 2 8 8 10 7 16 9 4
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Figure 1. A time series of weekly demand

M athematical M odel

extrapolation into the future to provide aforecast. The simplest model
suggests that the time seriesin Fig. 1 isaconstant value b with variations

about b determined by arandom variablez;.
Xi=b+g

The upper case symbol X; represents the random variable that isthe
unknown demand at timet, while the lower case symbol x; is avalue that

variance. It isaso common to assume that the noise variationsin two
different time periods are independent. Specifically

Ele] = 0, Var[g,] = o¢2, E[ee, ] =0fort? w.

A more complex modd includes alinear trend b; for the data.

Our goal isto determine amodel that explains the observed data and allows

has actually been observed. The random variation & about the mean value
is called the noise, and is assumed to have a mean value of zero and agiven
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xt = b + byt +¢g,. 2
Of course, Egs. (1) and (2) are special cases of apolynomia model.
X;=bg+bit +byt% ... +bt"+eg

A model for a seasonal variation might include transcendental functions.
The cycle of the model below is4. The model might be used to represent
datafor the four seasons of the year.

_ 2mt 2t
Xy=bg + by sirz~ + Db, cos7~ + ¢

In every model considered here, the time seriesis afunction only of
time and the parameters of the models. We can write

X = f(bg, by, by,....b,, 1) + &,

Because the value of f isaconstant at any given timet and the expected
value of & is zero,

Ely] = f(bg, by, bs,....b,, 1) and Var[X,] =V[e,] = c¢2.

The model supposes that there are two components of variability for the
time series; the mean value varies with time and the difference from the
mean varies randomly. Timeisthe only factor affecting the mean value,
while all other factors are subsumed in the noise component. Of course,
these assumptions may not in fact be true, but this chapter is devoted to
cases that can be abstracted to this ssimple form with reasonable accuracy.

One of the problems of time series analysisisto find the best form
of the model for a particular situation. In thisintroductory discussion, we
are primarily concerned about the smple constant or trend models. We
leave the problem of choosing the best model to a more advanced text.

In the following subsections, we describe methods for fitting the
model, forecasting from the model, measuring the accuracy of the forecast
and forecasting ranges. We illustrate the discussion of this section with the
moving average forecasting method. Several other methods are described
later in the chapter.

Fitting Parameters of the Model

Once amode is selected and data are collected, it isthe job of the Statistician
to estimate its parameters; i.e., to find parameter values that best fit the
historical data. We can only hope that the resulting model will provide good
predictions of future observations.

Statisticians usually assume that all valuesin agiven sample are
equally valid. For time series, however, most methods recognize that recent
data are more accurate than aged data. Influences governing the data are
likely to change with time so a method should have the ability of de-
emphasizing old data while favoring new. A model estimate should be
designed to reflect changing conditions.
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In the following, the time series model includes one or more
parameters. We identify the estimated values of these parameters with hats
on the parameters. For instance,

BB, B

The procedures also provide estimates of the standard deviation of the
noise, cal it 6. Again the estimateisindicated with ahat, 6,. We will see

that there are severa approaches available for estimating Ge.

To illustrate these concepts consider the datain Table 1. Say that the
statistician has just observed the demand in period 20. She aso has
available the demands for periods 1 through 19. She does not know the
future, so the data points shown as 21 through 25 are not available to her.
The datistician thinks that the factors that influence demand are changing
very slowly, if at all, and proposes the simple constant mode! for the
demand given by Eq. (1)

With the assumed model, the values of demand are random variables

drawn from a population with mean value b. The best estimator of b isthe
average of the observed data. Using al 20 points, the estimate is

20
b=a x/20=113,
t=1
Thisisthe best estimate for the 20 data points; however, we note
that x, is given the same weight as X, in the computation. 1f we think that

the model is actually changing over time, perhapsit is better to use a method
that gives lessweight to old data and more weight to the new. One
possibility isto include only recent datain the estimate. Using the last 10
observations and the last 5, we obtain

20 20
b=ax/10=112andb= § x /5=09.4.
t=10 t=15
which are called moving averages.
Which isthe better estimate for the application? Weredlly can't tell
at this point. The estimator that uses all data pointswill certainly be the best
if the time series follows the assumed model; however, if the model isonly

approximate and the situation is actually changing, perhaps the estimator
with only 5 data pointsis better.

In genera, the moving average estimator is the average of the last m
observations.

b= 3 x /m,
=

wherek =t —m+ 1. The quantity misthetimerange and is the parameter
of the method.
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Forecasting from the M odel

The main purpose of modeling atime seriesis to make forecasts which are
then are used directly for making decisions, such as ordering
replenishments for an inventory system or developing staff schedules for
running a production facility. They might also be used as part of a
mathematical model for a more complex decision analysis.

In the analysis, let the current time be T, and assume that the
demand data for periods 1 through T are known. Say we are attempting to

forecast thedemand at time T +t in the example presented above. The
unknown demand is the random variable X 1+, and its ultimate realization

isX14. Ourforecast of the redlization is'>?T +¢- Of course, the best that we
can hopeto do is estimate the mean value of X+,.. Evenif thetime series

actually follows the assumed model, the future value of the noiseis
unknowable.

Assuming the model is correct
Xt14r = E[X74.] + &t where E[X14¢] = f(bg, by, b, ...,b,,, T+1).

When we estimate the parameters from the data for times 1 through T, we
have an estimate of the expected value for the random variable as afunction

of t. Thisisour forecast.
X140 = (g, By, by, .., B, T+1).

Using a specific value of T in thisformula provides the forecast for period

T+1. When welook at the last T observations as only one of the possible
time series that could have been obtained from the model, the forecast isa
random variable. We should be able to describe the probability distribution
of the random variable, including its mean and variance.

For the moving average example, the statistician adopts the model
Xt =b+ Et
Assuming T is 20 and using the moving average with 10 periods, the
estimated parameter is
b=11.2
Because this model has a constant expected value over time, the forecast is
thesamefor al future periods.
Xr,=b=112fort=1,2, ...

Assuming the moddl is correct, the forecast is the average of m

observations al with the same mean and standard deviation ;. Because the
noiseis normally distributed, the forecast is aso normally distributed with
mean b and standard deviation
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Measuring the Accuracy of the Forecast

The error in aforecast is the difference between the realization and the
forecast,

N
€ = X741 X741

Assuming the model is correct,

&= E[XTH] tg _/)ETH'
We investigate the probability distribution of the error by computing its
mean and variance. One desirable characteristic of the forecast ')?T +¢ isthat
it beunbiased. For an unbiased estimate, the expected value of the forecast
isthe same as the expected value of the time series. Because g is assumed
to have amean of zero, an unbiased forecast implies
Ele] = 0.

Moreover, the fact that the noise is independent from one period to the next
means that the variance of the error is

Var[e,] = Var[E[X1,.] =X 1,.] + Var[er, ]

0e2(t) = 02(t) + o2
Aswe seg, thisterm has two parts. (1) that due to the variance in the

estimate of the mean 62(t), and (2) that due to the variance of the noise 62.

Due to the inherent inaccuracy of the statistical methods used to estimate the
model parameters and the possibility that the model is not exactly correct,

the variance in the estimate of the meansis an increasing function of <.
For the moving average example,

G2
0e2(t) =7y +062=091+ (Vm)].

The variance of the error is adecreasing function of m. Obvioudly, the
smallest error comes when mis aslarge as possible, if the moddl is correct.
Unfortunately, we cannot be sure that the model is correct, and we set m to
smaller values to reduce the error due to a poorly specified model.

Using the same forecasting method over a number of periods allows
the analyst to compute measures of quality for the forecast for given values
of 1. Theforecast error, €, is the difference between the forecast and the
observed value. For timet,

N
& =X — Xt
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Table 2 shows a series of forecasts for periods 11 through 20 using
the datafrom Table 1. The forecasts are obtained with a moving average for

m=10and t=1. We makeaforecast at timet with the calculation

t
Qt+1 = a x; /10.
i=t-9
Although in practice one might round the result to an integer, we keep

fractions here to observe better statistical properties. The error of the
forecast is the difference between the forecast and the observation.

Table 2. Forecast Error for aMoving Average

Time, t
Data 11 12 13 14 15 16 17 18 19 20
Observation| 3 14 14 20 7 9 6 11 3 11
Forecast 11.7 116 114 116 111 105 102 104 10.7 10.1
Error -8.7 24 2.6 84 -41 -15 42 06 -7.7 09

One common measure of forecasting error is the mean absolute
deviation, MAD.

d
alel
MAD = 41—
n

where n error observations are used to compute the mean.
The sample standard deviation of error is also a useful measure,
4 3
d@ -9 ae?- n@E?
_i=l _i=l
- n-p - n-=p
where € isthe average error and p is the number of parameters estimated for

the model. Asn grows, the MAD provides areasonable estimate of the
sample standard deviation

Se » .25 MAD

From the example data we compute the MAD for the 10
observations.

MAD = (87 + 24+ - - - +0.9)/10 = 4.11.
The sample error standard deviation is computed as follows.

8=(-8.7+2.4...0.9)/10 = —1.13.

—8.72 + 2.42....0.9%) — 10(-1.13)2
se2:( 5 ) ( ) =27.02
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Se = 5.198.

We see that 1.25(MAD) = 5.138 is approximately equal to the sample
standard deviation. Becauseit iseasier to compute the MAD, this measure
isused in our examples!

The value of s¢? for a given value of T isan estimate of the error

variance, 082(1). It includes the combined effects of errorsin the model and
the noise. If one assumes that the random noise comes from anormal
distribution, an interval estimate of the forecast can be computed using the
Sudents t distribution.

N
X4 £ ta/25e(T)

The parameter t,/2 isfound ina Sudentst distribution tablewithn—p
degrees of freedom.

1The time series used as an example is simulated with a constant mean. Deviations from
the mean are normally distributed with mean 0 and standard deviation 5. One would expect

an error standard deviation of 5V1+1/10 = 5.244. The observed statistics are not far from
thisvalue. Of course, adifferent realization of the simulation will yield different statistical

values.
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22.2 Analysis of the Constant M odel

In this section, we investigate two procedures for estimating and forecasting based on a
constant model. The next section considers amodel involving alinear trend. For all cases
we assume the data from previous periods: X4, X,, ... , X1, isavailable and will be used to

provide the forecast.

To illustrate the methods, we propose a data set that incorporates changesin the
underlying mean of the time series. Figure 2 shows the time series used for illustration
together with the mean demand from which the series was generated. The mean begins as
aconstant at 10. Starting at time 21, it increases by one unit in each period until it reaches
the value of 20 at time 30. Then it becomes constant again. The datais simulated by
adding to the mean, arandom noise from anormal distribution with 0 mean and standard
deviation 3. Table 3 showsthe simulated observations. When we use the datain the table,
we must remember that at any given time, only the past data are known.

0O 5 10 15 20 25 30 35 40 45 50
Figure 2. Smulated datafor model with alinear trend

Table 3. Simulated Observations

Time Observations

1-10 7 14 11 19 12 11 7 9 9 12
11-20 6 12 12 16 8 9 7 11 6 10
21-30| 10 10 8 13 14 16 15 22 19 16
31-40| 19 22 21 18 20 22 21 20 20 21
41-50| 23 22 22 18 17 18 19 21 20 21

Moving Average

This method assumes that the time series follows a constant model, i.e., Eq.
(1) given by X, = b + g,. We estimate the single parameter of the mode! as
average of thelast m observations.
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BZé_xi/m,

i=k
wherek =t —m+ 1. Theforecast isthe same as the estimate.

N
XT+T=B fort>0

The moving average forecasts should not begin until m periods of data are
available. Toillustrate the calculations, we find the estimate of the
parameter at t = 20 using m = 10.

20
b= §x/10=97
i=11
The estimates of the model parameter, B, for three different values of
m are shown together with the mean of thetime seriesin Fig. 3. Thefigure

shows the moving average estimate of the mean at each time and not the
forecast. The forecasts would shift the moving average curvesto the right

by t© periods.

— Mean
O- vA 20
¢ MA 10

- MAS

3 1 3 3 3 3 + d
T T T T T T T 1
15 20 25 30 35 40 45 50

Figure 3. Moving average response to changes

One conclusionisimmediately apparent from Fig. 3. For all three
estimates the moving average lags behind the linear trend, with the lag
increasing with m. Because of the lag, the moving average underestimates
the observations as the mean isincreasing. Thelag in time and the bias
introduced in the estimate are

lag = (m—1)/2, bias=-alm-1)/2.
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Exponential

The moving average forecast of T periods into the future increases these
effects.

lag=1 +(m—1)/2, bias=—gt +(m—1)/2].

We should not be surprised at thisresult. The moving average
estimator is based on the assumption of a constant mean, and the example
has alinear trend in the mean. Because real time serieswill rarely obey the
assumptions of any model exactly, we should be prepared for such results.

We can aso conclude from Fig. 3 that the variability of the noise has
the largest effect for smaller m. The estimate is much more volatile for the
moving average of 5 than the moving average of 20. We havethe
conflicting directives to increase m to reduce the effect of variability due to
the noise, and to decrease m to reduce the effect of the variability dueto
changes in mean.

Smoothing for the Constant M odel

Again, this method assumes that the time series follows a constant model,
X =b+¢g,. The parameter vaueb is estimated as the weighted average of
the last observation and the last estimate.

Br = axp + (1- )by,

where o. isaparameter intheinterval [0, 1]. Rearranging, obtains an

dternative form.
6T = 6T—1 touxy - 6T-1)-

The new estimate is the old estimate plus a proportion of the observed error.

Because we are supposing a constant model, the forecast is the same
asthe estimate.

N
XT+T—6 fort>0.

Weillustrate the method using the parameter value o = 0.2. The
average of thefirst 10 periods was used asinitialize the estimate at time O.
Thefirst 10 observations were then used to warm up the procedure.
Subsequent observations and estimates are shown in Table 4.

Table 4. Results of the Exponential Moving Forecast

Time

11 12 13 14 15 16 17 18 19 20

Observation
Esimate

6 12 12 16 8 9 7 11 6 10
10.7 9.763 10.21 10.57 11.65 10.92 10.54 9.831 10.06 9.252

At time 21 we observe the value 10, so the estimate of the mean at
time2lis
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B,y =Bog + 0.2(xy; —B,0) = 9.252 + 0.2(10 — 9.252) = 9.412.

Only two data elements are required to compute the new estimate, the
observed data and the old estimate. This contrasts with the moving average
which requiresm old observations to be retained for the computation.

Replacing BT 1 with its equivalent, we find that the estimate is

f)T =oxy +(1-o)(oxr_g +(1- oc)f)T_ 2)-
Continuing in this fashion, we find that the estimate isreally a weighted
sum of all past data.
Br = axg + (@ —o)x7og + (L= 0)Px_o + - + (L —0) T 72xy).

Because o isafraction, recent data has a greater weight than more
distant data. The larger values of o provide relatively greater weight to
more recent data than smaller values of o..  Figure 4 shows the parameter

estimates obtained for different values of o together with the mean of the
time series.

~— Model
001
*=0.2

<04

" @ " " " " " 1
T T T T T T T 1
15 20 25 30 35 40 45 50

Figure 4. Exponential smoothing for the example time Series

A lag characteristic, similar to the one associated with the moving
average estimate, can aso be seenin Fig. 4. In fact, one can show
comparable results

al - o)

1-o
Iag:T, bias=— o
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For larger value of o we obtain a greater lag in response to the trend.

To investigate the error associated with exponential smoothing we
again note that the error is

N
€ = X741 X741

Assuming the model is correct, we have the following.
€, = E[Xqyq] + & —Xpur.
Ele;] = E[Xr,] + Ele] - ElXr, ]
E[Xps,] S 0b[1+ (1 —0) + (L —0),+ -+ (L1—a) Y.

AstheT goesto infinity, the seriesin the brackets goes to /o, and we find
that

E[Xr..] =bandE[e,] = 0.

Because the estimate at any time isindependent of the noise at afuture time,
the variance of the error is

Varle] = Var[Xr, ] + Varler,]

0g2(t) = o 2(1) + o2
The variance of the error has two parts, the first due to the variance in the
estimate of the mean 62(t), and the second due to the variance of the noise
c2. For exponential smoothing,
2

oo
og2(T) = > o

Thus assuming the model is correct, the error of the estimate increases as o
increases.

This result shows an interesting correspondence to the moving
average estimator. Setting the estimating error for the moving average and
the exponential smoothing equal, we obtain.

62 oo?
020 ==

Solving for o in terms of m, we obtain the relative values of the parameters
that give the same error

2
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Thus the parameters used in the moving averageillustrations of Fig. 3 (m =
5, 10, 20) and roughly comparable to the parameters used for exponentia

smoothing in Fig. 4 (o« = 0.4, 0.2, 0.1). Using this same relation between

the parameters of the two methods, we find that the biased introduced by the
trend will also be the same.
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22.3 Analysis of theLinear Trend Model

One way to overcome the problem of responding to trendsin the time seriesisto use a
model that explicitly includes atrend component,

Xy=a+bt+eg

whichisEg. (2). Inthefollowing, we use alinear model of the form
Xr=ar+b(t -T)+g.

Now, we must estimate two parameters ’a\lT and BT from the observations previousto time
T. Forecasts will be made by projecting the estimated mode! into the future.

N N
xTﬂ—aT+1:BT fort >0
Regression Analysis

One obvious way to estimate the parametersisto fit the last m observations
with astraight line. Thisissimilar to the moving average idea, except that
in addition to a constant term we also estimate the slope.

The formulas for determining the parameter estimates to minimize
the least squares differences between the line and the observations are well
known. Theresults are repeated here. The last m observations are used for
theestimate: X1_y41r XT-mar -+ 1 XT-

Define the following sums

s0= 4 x

k=t- m+1
t
St = a (k-t)x,.
k=t- m+1

The estimates of the parameters are determined by operations on these
sums.

ar= m(m F 1)) + m(m T 15)51(T)

6
Br=— v R OB CER L)

The expressions for the sums are awkward for spreadsheet
computation. Nevertheless, the computations can be carried out easily in a
sequential fashion by noting

Si()=S1(t—1) = X;_y, + X
So(1) =Sy(t—1) =Sy (t—1) + mXy_p,.

Aswith the moving average estimate, the regression method requires that
the last m observations to be saved for computation.
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To illustrate the computations, we derive estimatesfor T =20. The
relevant quantities are shown in Table 5.
Table5. Illustration of Linear Model

Time, t

Data 11 12 13 14 15 16 17 18 19 20 Totd
X4 6 12 12 16 8 9 7 11 6 10 97

(t-T)x, | 54 -9% -84 -9 40 -36 -21 -22 -6 0 455

ar = (0.05455)(—455) + (0.34545)(97) = 8.69
BT = (0.01212)(-455) + (0.05455)(97) = -0.22
Forecasts from time 20 are then computed from

Y004, =8.69—-0.221 fort >0.

Figure 5 shows the regression estimates of a for three different

values of m. Although there isalag in response when the ramp begins, the

estimate gradually grows to meet the ramp when m =5 and m=10. When
m = 20, there isinsufficient time for the computations to match the slope
before the mean value becomes constant again. We observe considerably
more variability for the same values of m when compared to the moving
average estimatesin Fig. 3. By allowing the flexibility of responding to a

trend, we have increased the variability of the estimates when the time series

is constant.
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6 t t t t t t t i
10 15 20 25 30 35 40 45 50

Figure5. Thelinear regression estimate for the time series

The ability of the regression estimate to respond to atrend is more
clearly illustrated when we remove the noise from the time series (the noise
varianceisset to 0). Theresult isshown in Fig. 6 where the estimate
adjusts to the changing mean. Because of alag effect, there are periods of
over- and under-correction after the points in time when the slope changes.
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24 -

22 +

20 T

18 =+

16 =+

14 =+

10
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10 15 20 25 30 35 40 45 50

Figure 6. Linear regression with zero noise variance

Exponential Smoothing Adjusted for Trend

Thereisaso avariation of the exponential smoothing method that explicitly
accounts for atrend component. Again we assume the linear model

Xy=ap+by(t -T) +e.
The new method simultaneoudly estimates the constant and trend component
using two parameters o and 3.

ar = oxy +(L-a)(ar + bry)

br=p (ar-ar_) + 1-B)br,

Forecasts are made with the expression

N N
Xrio = ar + By

At any time T, only three pieces of information are necessary to
compute the estimates 'éT_l, BT_l, and x1. The exponential smoothing
method is much simpler to implement than the regression method.

Thereisjustification for expressing both smoothing factorsin terms
of asingle parameter. Here
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2 8
=1-(1-9)5 B=T"—"—"T">
o= =05 BT Ty
We use these formulas in the following computations. The values of 6 and
the associated smoothing parameters are shown in Table 6.

Table 6. Datafor Exponentia Smoothing Example

Parameter Casel Case2 Case3
) 04 0.2 0.1
o 0.64 0.36 0.19
B 0.25 0.1111 0.0526

For purposes of illustration, we used a regression model with m =
10to find initial estimates of the constant and trend components. Starting at
time 10 we then applied the exponential smoothing equations. Thefirst 10
estimates are meaningless and constitute awarm up period for the method.

Assuming é = 0.2, at time 20 we have
Xo0 = 10, 8;9=8.23936, b;q=-0.253

Ao = 0.36X,0 + (1 —0.36) (39 + Byg) = 8.71
N\ N
B, = 0.1111(3,5—a;g) + (1 - 0.1111)b, g = —0.172
Forecasting: on +r = 871+ 0.1721.
Estimates of the time series using three values of the parameter are

shownin Fig. 7. Again we see that for greater values of 9, the estimate
beginsto track the mean value after an initial overshoot when the trend

begins. The lower values of 6 have less variability during the constant
portions of the time series, but react to the trend more slowly.



20 Time Series and Forecasting

24 —

~— Mean

0-04
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10 15 20 25 30 35 40 45

50
Figure 7. Example with estimates using exponential smoothing with atrend

Compared to the regression model, the exponential smoothing
method never entirely forgets any part of its past. Thusit may take longer
to recover in the event of a perturbation. Thisisillustrated in Fig. 8 where
the variance of the noiseisset to O.

22 -
20

18 -+

— Mean
16 =+

O-04
- 0.2
14

<01

12

10}

1 1 1
20 30 35 40 45

50
Figure 8. Exponential smoothing with 0 noise variance
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22.4 Selecting a Forecasting Method

The selection of aforecasting method is a difficult task that must be base in part on
knowledge concerning the quantity being forecast. We can, however, point out some
simple characteristics of the methods that have been described. With forecasting
procedures, we are generally trying to recognize a change in the underlying process of a
time series while remaining insensitive to variations caused by purely random effects. The
goal of planning isto respond to fundamental changes, not to spurious effects.

With amethod based purely on historical data, it isimpossibleto filter out al the
noise. The problemisto set parameters that find an acceptable tradeoff between the
fundamental process and the noise. If the processis changing very slowly, both the
moving average and the regression approach should be used with along stream of data.

For the exponential smoothing method, the value of o should be small to de-emphasize the
most recent observations. Stochastic variations will be almost entirely filtered out.

If the processis changing rapidly with alinear trend, the moving average and the
exponential smoothing methods are at a disadvantage because they are not designed to
recognize trends. Because of the rapid changes, the time range of the moving average

method must be set small and the o parameter of the exponential smoothing method must
be set to alarger value so that the forecasts will respond to the change. Nevertheless, these
two methods will awaysfall behind alinear trend. The forecasts will never convergeto a
trend line even if there is no random variation. Of course, with the adjustment of
parametersto allow aresponse to a process change, the forecasts become more sensitive to
random effects.

The exponential smoothing method with atrend adjustment and the regression
method are both designed to respond to alinear trend and will eventually convergeto a
trend line. Thusin the absence of a change in trend, the time range of the regression data

can belarge, and the o and B values of the exponential smoothing method can be small,
thus reducing the random effects.

If the processis changing rapidly with rapid changes in the linear trend, each of the
methods described in the chapter will have trouble, because it is difficult to separate
changesin the process from random changes. The time ranges must be set small for the
moving average and regression methods, resulting in sensitivity to random effects.

Similarly, theo. and B parameters for exponential smoothing must be set to larger values
with a corresponding increase in sensitivity to randomness.

Both the moving average and regression methods have the disadvantage that they
are most accurate with respect to forecasts in the middle of the time range. Unfortunately,
all interesting forecasts are in the future, outside the range of the data. With all methods,
though, the accuracy of the results decreases with the distance into the future one wishes to
forecast.
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22.5 Exercises

1.

Usethe datain Table 3 and the analytical results presented in Section 22.2. Assume
that you have observed the time series for 21 periods and let the next data point in the
series bexy, = 10. Update each of the forecasts described in Section 22.2 for t = 23.

Use the datain Table 3 for times 35 through 44.

Time, t 35 36 37 38 39 40 41 42 43 44

Observation | 53 55 44 41 48 42 33 38 26 23

Provide forecasts for times 45 through 50 using exponential smoothing with and
without atrend adjustment. For purposes of exponential smoothing use

o =0.3and b,,= 36.722.
For exponential smoothing with the trend adjustment, use

N

0=0.3,p=0.2, &, =32.22, b,=—2.632,

The table below shows 60 observations from atime series.

Time Observations

1-10| 99 104 112 85 95 98 91 87 112 1083
11-20( 106 9% 109 69 78 98 74 79 65 93
21-30| 58 76 70 61 75 58 63 32 43 41
31-40| 25 44 25 54 44 49 39 35 49 56
41-50| 49 45 38 45 44 50 62 51 55 58
51-60| 58 49 61 65 50 71 77 87 70 68

Using the data provided for times 1 through 10, generate aforecast for time 11. Then
sequentially observe x4, through X, (as given in the table), and after each observation

X, forecast the mean of the next observation E[Qt +1]. Compare the forecasts with the

actual data and compute the mean absolute deviation of the 10 observations. Do this
for the following cases.

a. Moving averagewithn=>5

b. Moving averagewithn =10

c. Regressonwithn =5

d. Regressonwithn=10

e. Exponential smoothing with oo = 0.2 and 69: 100.
f. Exponential smoothing with oo = 0.1 and 69: 100

g. Exponential smoothing witho = 0.2, B = 0.2, a,= 100, 69: 0
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h. Exponential smoothing with o = 0.1, B = 0.1, &= 100, b,=0

Note: The data given for the exponentia smoothing cases are not computed from the
data but are the model values for this point.

Computer Problems

For the following exercises, implement the appropriate forecasting methods using a
spreadsheet program such as Excel. Try to use the most efficient approach possible when

designing the calculations.
4.

The table below shows the random variations added to the model of Section 22.2 to

obtain the data of Table 3. Double the values of these deviations and add them to the

model to obtain anew set of data. Repeat the computations performed in Sections

22.2 and 22.3, and compare the mean residuals for the four forecasting methods

(moving average and exponential smoothing with and without a trend).

Time Variations

1-10( -3 4 1 9 2 1 -3 -1 -1 2
11-20| 4 2 2 6 2 -1 -3 1 4 0
21-30| -1 -2 -5 -1 -1 0 -2 4 o 4
31-40| -1 2 1 =2 0 2 1 0 0 1
41 - 50 3 2 2 2 -3 -2 -1 1 0 1

Use the data from Exercise 3 and experiment with the parameters of all methods

discussed in the chapter. Try to find the best parameters for this data set. Compare

the mean absol ute deviations for the best parameters found.

The data below is smulated from amodel that has a constant value of 20 for times 1

through 15. At times 16 through 30, the model jJumpsto 40. For times 31 through

50, the model goes back to 20. Experiment with the parameters of the forecasting

methods described in the chapter to find the one that best forecasts thistime series.

Time Observations

1-10( 21 24 16 21 24 25 24 25 21 20
11-20| 20 21 24 20 17 35 46 48 44 43
21-30| 37 49 39 42 46 40 40 32 46 49
31-40| 18 31 24 28 23 27 18 17 26 22
41-50( 15 22 12 11 25 22 17 14 21 20
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